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Abstract

We develop a credit model where agents disagree on when long-run disaster risk, such as
flooding from sea level rise (SLR), will damage collateral assets. Unlike existing models,
ours predicts that pessimistic agents are more likely to leverage risky asset purchases,
and prefer debt contracts with longer maturities. Intuitively, anticipating high risk of
collateral damage, pessimists value the implicit insurance in the option to default. Using
high-resolution SLR projections and comprehensive coastal real estate and mortgage data,
we find robust evidence of these predictions. We also analyze how securitization and other
policies affect the mortgage market’s SLR exposure.
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1 Introduction

Understanding how climate change may affect financial markets is a question of primary im-
portance to researchers, financial regulators, and policymakers around the world.1 A rapidly
growing “climate finance” literature is investigating the extent to which climate risks affect
asset markets, especially how sea level rise (SLR) affects housing prices (Bernstein et al. 2019;
Baldauf et al. 2020; Bakkensen and Barrage 2022). However, much less is known about how
SLR risk affects the mortgage market, despite the critical role this market plays in the finan-
cial system and financial stability. Understanding how credit markets allocate an emerging
source of risk is nontrivial, in part due to the agency problems that naturally arise in borrower-
lender relationships (Tirole 1999; Allen and Gale 2000). Complications compound when there
is belief disagreement across economic agents about future risks (Geanakoplos 2010; Simsek
2013), and belief disagreement is especially pronounced for climate change (Howe et al. 2015;
Ballew et al. 2019). A hypothesis common in policy discussions is that those who are less
concerned about climate risks (the “optimists”) are more likely to make leveraged investments
on at-risk assets than those who are more concerned (the “pessimists”) (e.g., Litterman et al.
2020; Brunetti et al. 2021), as predicted by standard models of leveraged investments under
belief disagreement (e.g., Geanakoplos 2010; Simsek 2013; Fostel and Geanakoplos 2015).

In this paper, we provide novel theoretical predictions and empirical evidence on how cli-
mate risks, specifically the increased risks of coastal flooding due to SLR, affect the mortgage
market. We start with a parsimonious model of collateralized credit under belief disagree-
ment, building upon the literature that follows the pioneering work of Geanakoplos (2010).
We introduce two empirically relevant elements: maturity choice and search frictions. The
maturity dimension is realistic for mortgage contracts and especially relevant for the SLR
context because (i) most of the damages from SLR will occur in the future, and hence (ii)
a contract with a longer maturity is naturally more exposed to SLR risks than one with a
shorter maturity. By allowing for different maturity lengths, the model uncovers a new chan-
nel where pessimistic borrowers can trade their exposure to the long-run risks with relatively
more optimistic lenders.2 We show that this new gain from trade is larger for more pessimistic
borrowers, “overturning” the conventional prediction in standard models of belief disagreement.

Specifically, we consider a model of defaultable long-term debt (a mortgage contract) where
the collateral asset (a coastal real estate property) is exposed to a potentially damaging disaster
risk in the long run (flooding risk due to SLR). We assume belief heterogeneity in a simple way:
a borrower (homebuyer) and lenders (mortgage-originating banks and mortgage-purchasing
financial institutions) disagree on the rate at which the disaster arrives. More optimistic
agents believe that the disaster will happen far into the future, while more pessimistic ones
believe that it will happen sooner.

The model yields clear analytical results. For a given default cost, if the underlying col-
1See, e.g., Network for Greening the Financial System (2019); Financial Stability Oversight Council (2021);

Board of Governors of the Federal Reserve System (2024), and the White House’s Executive Order on Tackling
the Climate Crisis.

2We refer to this phenomenon as “leveraging the belief disagreement” in the title of the paper.
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lateral asset is sufficiently exposed to the disaster risk, then the optimal leverage probability
and optimal maturity are both increasing in the degree of borrower pessimism (relative to
lenders’ beliefs). These are two key predictions of the model that we will test in the data.
Furthermore, we show that these predictions robustly hold in a series of model extensions un-
der plausible assumptions, including (mandatory or voluntary) disaster insurance, government
disaster assistance, endogenous housing prices, belief convergence, rental, and securitization.

Figure 1 illustrates the intuition.3 A defaultable long-term mortgage provides implicit
insurance against the long-run climate risk. The borrower has the option to default on the
loan when the disaster eventually damages the collateral asset. This implicit insurance is more
valuable for more pessimistic borrowers. The pessimistic borrower believes that the disaster
will happen soon, and when it does, it will be optimal to default. Expecting an early default,
the borrower would like to back load the repayment promises by choosing a long-maturity debt
contract, which stretches the payment stream over a long horizon. In contrast, the relatively
more optimistic lender believes that the collateral is safe, as according to their belief the
disaster will happen later. Thus, the lender is willing to offer a long-maturity debt contract.
As a result, there is a gain from trading a long-term debt contract, collateralized by the risky
asset, between a relatively optimistic lender and a relatively pessimistic borrower.

Time tEquilibrium maturity Tmature

Pessimistic borrower expects earlier disaster
(higher Pr[Tdisaster < Tmature])

Lender expects later disaster
(lower Pr[Tdisaster < Tmature])

Gain from trade

Figure 1: Illustration of the model’s main intuition.

Next, we evaluate the testable implications of the model by analyzing the effects of long-
run SLR risk on the mortgage market. We focus on coastal flooding associated with SLR not
only because it is one of the most salient dimensions of climate change, projected to affect
millions of households (Fleming et al., 2018; May et al., 2023), but also because SLR risk
exposures have been well documented with high-resolution spatial variations (see Figure 3 for
an illustration). SLR poses significant risks to the mortgage market due to increased and
more severe flooding or even permanent inundation. These events can damage housing assets
and reduce the value of the underlying land, unlike other climate change effects like heat or
drought, which primarily affect local productivity and amenities but do not directly harm the
value of the collateral asset.4

We employ an extensive proprietary dataset of real estate and mortgage transactions (pro-
vided by CoreLogic) to examine the complete sales history of single-family homes along the
U.S. East Coast from 2001 to 2016. We match each property’s exact coordinates with its
exposure to permanent coastal inundation projected under various SLR levels, using the Na-

3We thank Asaf Bernstein for suggesting this illustration.
4Moreover, as public trust doctrine typically defines public ownership of coastal land and waters below

mean high-tide levels, SLR will also pose unique legal issues including for private property rights (Hiatt, 2007).
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tional Oceanic and Atmospheric Administration’s (NOAA) state-of-the-art SLR mapping tool.
Exploiting the highly granular spatial variations in the SLR maps, our identification strategy
is to compare the observable mortgage outcomes between the transactions of properties that
have different SLR risk exposure but are otherwise very similar in other dimensions: having
the same ZIP code, same number of bedrooms, same year and month of sale, same mortgage
lender, similar distance to the coast and similar elevation.

To assign whether the homebuyer in a transaction is a (likely) pessimist or optimist regard-
ing future SLR risks, we follow the most recent development in the climate finance literature
(e.g., Bernstein et al. 2019 and Baldauf et al. 2020—henceforth BGL and BGY, respectively)
and rely on the Yale Climate Opinion Survey (Howe et al. 2015)’s of public perceptions on
global warming across the U.S. This database provides information on the fractions of adults
in each county who believe that global warming is happening, are worried about it, or believe
that it will harm them in the near future. For each property transaction, we match the geo-
graphic location of where the homebuyer comes from to the respective county’s climate belief
measure. The assumption is that a homebuyer from a county with a more pessimistic belief
measure is more likely to have a pessimistic belief themselves.5

Our empirical results are as follows. First, in re-estimating the classic hedonic housing price
regression, equipped with the rich set of fixed effects disentangling the SLR risks from coastal
amenity values, we find that at-risk properties (those projected to be permanently inundated at
six feet of SLR) sell at a 6% discount on average, relative to similar but less-at-risk properties.
The SLR discount is significantly stronger (at about 10%) when the homebuyer is a likely
pessimist. The sign and magnitude of our estimates align closely with the previous literature’s
findings on the capitalization of SLR risks in the coastal real estate market (e.g., BGL and
BGY) and are robust to alternative measures of SLR risks and econometric specifications.

Second, we find robust evidence for the model’s implication on the extensive margin of the
leverage probability. All else equal, the transaction of an at-risk property has an approximately
two percentage points higher probability of being associated with a mortgage, indicating higher
leverage probabilities for riskier investments. The magnitude is economically significant—two
percentage points is about a half of the rise in the share of property transactions that are
leveraged in our data between 2001 (the beginning of our sample) and 2007 (the peak of the
housing boom before the Great Recession).

Further consistent with our theory, we find that belief disagreement is a key moderator of
the relationship between SLR risks and leverage. Buyers who are more likely to be pessimists
are more likely to use mortgage debt to finance the purchase of at-risk properties. Among
transactions with such homebuyers, at-risk properties are about 3.4% more likely to be lever-
aged, while the relationship between SLR risks and leverage is not statistically significant
among likely optimistic homebuyers.

5In a related paper outside of the climate context, Meeuwis et al. (2022) evaluate the implications of the
belief disagreement between (likely) Republicans and (likely) Democrats for equity investment decisions after
the 2016 presidential election. Due to a data limitation similar to ours, the authors cannot observe households’
equity belief or political affiliation, and they devise ways to assign whether a household is (likely) Democrat
or (likely) Republican based on publicly available political data aggregated at the local ZIP code level.
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Third, we also find robust evidence for the model’s implication on the intensive margin of
maturity choice. Among transactions of at-risk properties, likely pessimistic homebuyers are
more likely to borrow with a mortgage contract with a long maturity of thirty years. Note that
these contracts are naturally more exposed to future SLR risks than contracts with a shorter
maturity of fifteen years. All of the results above are robust to alternative specifications of
climate beliefs, fixed effects, SLR risk definitions, and a suite of additional control variables.

In response to potential concerns about climate belief variables based on the Yale survey,
including the potential selection bias due to residential sorting over climate risks (Bakkensen
and Ma, 2020; Bakkensen and Barrage, 2022), we provide several additional ways to measure
homebuyers’ climate beliefs. In one approach, instead of relying on surveys, we develop a
novel belief imputation strategy to estimate transaction-specific beliefs from our micro data.
Specifically, we recover individual homebuyer beliefs from the residuals of a hedonic regres-
sion of the housing price on observable housing, neighborhood, and homebuyer neighborhood
characteristics. Intuitively, the extent to which a transaction price capitalizes the SLR risk
should reveal the extent to which the homebuyer is concerned about the risk. We then use the
transaction-level imputed beliefs in the mortgage regressions, and our results robustly hold.

It is natural to ask why mortgage lenders are potentially (acting as if they are) less pes-
simistic about climate risks than certain borrowers. Recent papers in the literature have
argued that mortgage lenders tend to shift climate risks to government-sponsored enterprises
(GSE) through the process of securitization and the sale of mortgages below the conforming
loan limits to such institutions. This is possible since GSE securitization rules and guarantee
fees do not incorporate future SLR risks (Liao and Mulder 2021; Ouazad and Kahn 2022;
Panjwani 2022). If this is indeed the case, then we should expect our empirical results to hold
more for the conforming loan segment than for the jumbo segment. In fact, this is exactly
what we find: our leverage and maturity results are largely driven by conforming loans.

Finally, we use the model to explore relevant policy implications related to financial stabil-
ity, including phasing out the GSEs’ guarantee subsidy, the roles of flood insurance mandates,
and disaster forbearance policies. We further provide an accounting exercise on the flood risk
exposure of more than 100 million single-family mortgages on GSE balance sheets, and an
event study of how a climate-related disaster increases the default rates in this sample. Over-
all, our paper highlights the nontrivial ways that climate-related risks and beliefs affect the
mortgage market, whose stability is key to the stability of the financial system.

The rest of the paper is organized as follows. Section 2 discusses the related literature.
Section 3 provides the theoretical model, while Section 4 provides a series of extensions. Section
5 describes the data, empirical framework, and empirical results. Section 6 provides a battery
of robustness checks. Section 7 discusses potential policy implications. Section 8 concludes.
The Appendix provides proofs and further details of the extensions and empirical analysis.
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2 Related literature

To the best of our knowledge, our paper is the first to investigate the effects of climate risks
and heterogeneous climate beliefs on a collateralized debt market. In doing so, it relates and
contributes to several bodies of research.

The first is a rapidly growing (empirical) literature on climate finance, which studies how
climate risks interact with financial markets (Hong et al. 2020; Furukawa et al. 2020; Giglio
et al. 2021; Hsiang et al. 2023). Our paper contributes to the understanding of how SLR
and increased flood risks affect the housing market (BGL; BGY; Murfin and Spiegel 2020;
Hino and Burke 2021; Keys and Mulder 2020; Addoum et al. 2021; Bakkensen and Barrage
2022).6 Our paper also contributes to a growing but important set of papers investigating how
the interaction between climate risks and policies (on securitization and insurance subsidies)
affects the mortgage market (Issler et al. 2020; Liao and Mulder 2021; Sastry 2021; Ouazad
and Kahn 2022; Nguyen et al. 2022). In investigating climate risks as a source of long-run risks
that could affect the prices of long-term financial assets/liabilities such as stocks and long-term
municipal or sovereign bonds, our analysis is related to those in Bansal et al. (2021), Painter
(2020), Goldsmith-Pinkham et al. (2021), and Barnett and Yannelis (2021). In developing
a method to infer investors’ climate beliefs from detailed financial market data (residential
housing transactions in our case), our paper is also related to Alekseev et al. (2021) (changes
in the portfolios of mutual funds) and Ouazad (2022) (firm-level option prices).

Our paper also adds to the growing literature on climate adaptation (e.g., Hsiang and
Narita 2012; Mendelsohn et al. 2012; Barreca et al. 2016; Desmet et al. 2021; Fried 2021;
Phan and Schwartzman 2021; Cruz and Rossi-Hansberg 2024). While this literature has
mainly focused on physical adaptation (e.g., migration away from areas exposed to SLR,
building houses on stilts, adoption of air conditioning), we provide a novel analysis of financial
adaptation, in particular the leveraged investment strategy via the mortgage market.

On the theoretical side, our paper is related to the literature on modeling credit markets
with heterogeneous beliefs pioneered by Geanakoplos (1997, 2003, 2010). To the best of our
knowledge, ours is the first to apply such a theory to the context of climate change. In doing
so, we make two contributions. Empirically, we are the first to exploit the well-documented
heterogeneity in the beliefs about climate change to evaluate these theories.7 Theoretically,
we add a new insight into how the time dimension of endogenous maturity choice can change
the theoretical predictions. As mentioned previously, most existing models (e.g., Geanakoplos,
2010; Simsek, 2013; Fostel and Geanakoplos, 2008, 2015; Geerolf, 2015; Cao, 2018, and Dong
et al., 2022) predict that optimists, rather than pessimists, are more likely to make leveraged
investments and thus cannot explain the empirical finding that we document. In “overturning”
this standard prediction, the closest paper to ours is Bailey et al. (2019), which develops a

6Also related is an empirical literature that uses hedonic empirical analyses to study how flood risk affects
property prices. See Hallstrom and Smith (2005), Bakkensen et al. (2019) and further references in Daniel
et al. (2009) and Bakkensen and Barrage (2022).

7Also related is empirical literature that studies the role of heterogeneous information (on
land/structure/neighborhood characteristics) in housing and mortgage markets. See Kurlat and Stroebel
(2015), Stroebel (2016), and references therein.
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two-period model of mortgage leverage choice with heterogeneous beliefs over future house
prices (and default probability), where agents have an additional choice at the intensive mar-
gin to either purchase a cheaper home or to rent, and evaluates the model’s predictions using
Facebook data. Our model provides a different yet complementary channel: the choice at the
intensive margin of debt maturity. In particular, while the maturity is automatically fixed in
existing two-period environments, including Bailey et al. (2019), our model features endoge-
nous maturity choice for the debt contract. The endogenous maturity is key in explaining the
empirical patterns on the relationship we find between climate risks and mortgage maturity.8

Our model also features search frictions, which allow us to endogenize and characterize the
probability of mortgage usage, which is a critical moment in mapping our model to data.

Our model also builds upon the housing market search literature (Ngai and Tenreyro
2014; Head et al. 2014; Landvoigt et al. 2015; Garriga and Hedlund 2020) and the credit
market search literature (Bethune et al. 2022; Rocheteau et al. 2018). Our contribution to
this literature is to incorporate long-run risks and heterogeneous beliefs in a competitive search
model, which generates a dispersion of housing prices and mortgage outcomes as seen in the
data.9 Our model also relates to models of risk shifting in collateralized debt markets (Allen
and Gale 2000; Barlevy 2014; Bengui and Phan 2018; Allen et al. 2022).

3 Model

3.1 Environment

We develop a theoretical framework to analyze how belief disagreement about long-run risk
affects debt outcomes. The baseline is a parsimonious model of a single borrower, with the
timing summarized in Figure 2. Section 4 will provide a series of extensions and generalizations.

Time t

Loan market

Borrower chooses optimal mortgage m∗

& default strategy τ∗

0

Disaster shock
(agents disagree over its arrival rate)

T (random)

Figure 2: Illustration of the timing of events in the model.

Asset Time is continuous and infinite. There is an indivisible housing unit, which yields
a constant flow of housing utility h > 0, until a disaster strikes and permanently lowers the
utility flow to h − d, where d > 0 denotes the house’s disaster exposure. For simplicity, we

8Where Bailey et al. (2019) assume homebuyer beliefs are not known to the lenders and only focus on
the borrower’s decision, we assume agents agree to disagree over beliefs—arguably fitting for our climate risk
setting—and formally model both the borrower and lender decisions. Thus, our model generates insight for
the puzzling question of why lenders lend to known pessimists who anticipate a higher probability of default.

9See also Allen et al. (2014, 2019) for a random search model of mortgage, Lagos and Zhang (2020) for a
monetary search model with heterogeneous belief and Wright et al. (2021) for a survey of competitive search.
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assume d is a known constant, but the arrival time of the disaster T is a random variable (the
only source of uncertainty in the baseline model). The flow of housing utility thus given by:

ht =

h for t < T

h− d for t ≥ T
.

For now, we take as given the housing price p (endogenized in Section 4.5), and assume agents
cannot insure against the disaster (relaxed in Section 4.1).

Agents At t = 0, the house is matched with a homebuyer/borrower. The homebuyer has
an option to finance the house purchase with a mortgage loan, which is collateralized by the
housing asset. Lenders are competitive and free to enter the mortgage market with an entry
fee and search frictions (to be described below). We assume that all agents are risk-neutral
and discount future utility at a common rate r > 0 (generalized in Section 4.6), i.e., their
preferences for the accumulated cash flow process Ct are given by E

∫∞
0 re−rtdCt.

Belief disagreement The borrower believes that the disaster date T will arrive at a rate
rλ, i.e., T has an exponential distribution: Pλ [T ≤ t] = 1− e−rλt.10 The lenders believe that
it will arrive at the rate rλ̄, which can be different from rλ. A higher value of λ or λ̄ indicates
more pessimism: the agent believes that the disaster will arrive sooner. For example, when
λ → ∞, the agent (very pessimistically) believes that the disaster will happen immediately,
while when λ → 0, the agent (very optimistically) believes that the disaster will never arrive.
Each agent’s belief is common knowledge and they agree to disagree with each other (we allow
for learning and belief convergence in Section 4.8).

Mortgage contract A mortgage m = (l, b, µ) is a loan contract collateralized by the house.
It specifies the amount l ≥ 0 that the lender loans to the borrower at t = 0, the fixed amount
b ≥ 0 that the borrower promises to repay the lender continuously at every t ∈ [0, Tµ] until
the loan matures at date Tµ, which arrives at rate rµ ≥ 0 (i.e., P[Tµ ≤ t] = 1− erµt). A higher
µ implies that the loan will mature faster, and hence has a shorter average maturity.11 The
corresponding (normalized) loan balance at t is Bt ≡ E

∫ Tµ

t re−r(s−t)bds.
The borrower can default at any time τ before the loan matures. After doing so, she surren-

ders the house and additionally faces a one-time exogenous default cost f/r ≥ 0 (representing
monetary and nonmonetary costs in the foreclosure process). The lender then forecloses and
sells the house at liquidation price p̄τ . If the foreclosure takes place on or after the disaster
(τ ≥ T ), then we naturally set p̄τ = (h− d)/r, which is the present value of the post-disaster
housing utility stream (since all uncertainty will be resolved after the disaster). However, if
the foreclosure occurs before T , then we set the liquidation price at a general value p̄τ = p.

10Since only the ratio between the arrival rate and the discount rate (rather than their values) that matters,
we normalize all the arrival rates (e.g., the disaster arrival rate or the mortgage maturity rate) with r.

11We can think of a long-term (30-year) fixed-rate mortgage in practice as a contract with low µ in our
model. Also, the fact that the loan repayment b is noncontingent (fixed at t = 0) maps to the fixed interest
rate at the time of loan origination.
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Borrower’s value functions At t = 0, the borrower’s amortized present value (PV) of the
stream of housing utility from the house is given by:

vλ ≡ Eλ

∫ ∞

0
re−rthtdt = h− λ

1 + λ
d. (1)

An increase in λ (more pessimism) leads to a lower valuation. We focus on the relevant case
where the homebuyer’s PV of purchasing the house without leverage vλ − rp is positive, and
foreclosing the house before the disaster always involves a loss, i.e., rp− f − vλ < 0.

The PV of fully repaying the mortgage is:

−r (p− l)︸ ︷︷ ︸
down payment

+ Eλ

[∫ Tµ

0
re−rt(ht − b)dt

]
︸ ︷︷ ︸

PV of owning minus debt repayment

+ Eλ

[∫ ∞

Tµ

re−rthtdt

]
︸ ︷︷ ︸

PV after loan has matured

.

In contrast, if the borrower defaults before the loan matures (τ ≤ Tµ), then the valuation is:

−r(p− l) + Eλ

[∫ τ

0
re−rt(ht − b)dt

]
+ Eλ

[
e−rτ (rmax {p̄τ −Bτ/r, 0} − f)

]︸ ︷︷ ︸
PV of default cost

where the last term represents the fact that the defaulting borrower can walk away from any
remaining loan balance Bτ/r in excess of the house’s liquidation price p̄τ .

The optimal default time τ∗m solves the following:

Vλ(m) ≡ max
τ

Eλ


∫ τ∧Tµ

0
re−rt(ht − b)dt︸ ︷︷ ︸

value of repaying until τ∧Tµ

+e−r(τ∧Tµ)


1τ>Tµ

∫ ∞

0
re−rtht+Tµdt︸ ︷︷ ︸

value of full repayment

+1τ≤Tµ(max {rp̄τ −Bτ , 0} − f)︸ ︷︷ ︸
value of defaulting at τ



 ,

(2)
where τ is chosen from the set of related stopping times (i.e., τ can be contingent on the
realizations of events like disaster and maturity), and τ ∧ Tµ denotes min{τ, Tµ}.12

Remark 1 (Random maturity). As is standard in models of long-term debt (e.g., Leland and
Toft, 1996; Cochrane, 2001; Elenev et al., 2016), we assume that the maturity date Tµ is
random. This assumption is not essential for our results (see a model with deterministic
maturity in Appendix A.2.7) but simplifies the algebra as the loan balance is constant:

Bt ≡ E
∫ Tµ

t
re−r(s−t)bds =

b

1 + µ
,

and hence we do not need to keep track of Bt as a state variable at each t.
12A stopping time is a random variable that is measurable with a filtration generated by the σ-algebras of

events T and Tµ. For example, τ = T + 1 is a stopping time, but τ = T − 1 is not. In words, one cannot
default a year before the disaster, because it requires beforehand knowledge of when the disaster will strike.
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Lender’s value functions Anticipating the borrower’s default strategy τ = τ∗m, a lender’s
expected revenue from a mortgage contract m is:

Rλ̄(m) ≡ Eλ̄


∫ τ∧Tµ

0
re−rtbdt︸ ︷︷ ︸

value of repayment stream

+ 1τ≤Tµre
−rτ min {p̄τ , Bτ/r}︸ ︷︷ ︸

value of seized collateral and remaining loan balance

∣∣∣∣∣∣∣∣∣
τ=τ∗m

 . (3)

The expectation is based on the lender’s belief parameter λ̄, and not the borrower’s belief
parameter λ as in (2). A lender’s expected profit from contract m is:

Πλ̄(m) ≡ Rλ̄(m)︸ ︷︷ ︸
expected revenue

− rl︸︷︷︸
cost of loan

− κ(µ)︸︷︷︸
servicing cost

. (4)

Here, κ(·) > 0 is the operational cost of servicing the loan, where κ′ < 0, i.e., it is costlier to
service a loan with a longer average maturity. To guarantee a unique interior solution (µ∗ > 0

in equilibrium), we assume κ′′ > 0 and κ′(0) = −∞, i.e., mortgages that never mature are
extremely costly to serve (relaxed in Section 4.4). Furthermore, each lender incurs a fixed cost
κ0 > 0 to enter the loan market to offer the mortgage contract m.

Competitive search The borrower is matched with a lender (out of the pool of competitive
lenders) through a competitive search and matching process.13 With search frictions, the
borrower has an endogenous probability αm of finding a lender offering a mortgage contract
m. Similarly, each lender has probability ηm of finding a borrower. There is an exogenous
matching function η that maps ηm = η(αm), where η is strictly decreasing and convex.14

Taking into account the search frictions as summarized by the matching function η, and
given the solution Vλ(m) to optimal default problem (2), the optimal mortgage contract m∗

and the associated leverage probability α∗
m maximize the borrower’s value:

Uλ ≡ max
αm,m

αm · [−r(p− l) + Vλ(m)]︸ ︷︷ ︸
PV of buying a house with leverage

+(1− αm) · (vλ − rp)︸ ︷︷ ︸
PV of buying without leverage

, (5)

subject to the lenders’ free-entry condition:

η(αm) ·Πλ̄(m)︸ ︷︷ ︸
Lender’s expected profit

= κ0︸︷︷︸
entry cost

, (6)

13Appendix A.2.8 provides more detail. We choose the search environment not only because we think it
captures the essence of credit search in practice (e.g., homebuyers searching for a mortgage lender), but also
more importantly because it allows us to endogenize and characterize the probability that the home purchase
is financed with a mortgage—a quantity that is key in our empirical analysis. Also, the search frictions lead to
a dispersion of prices and mortgage terms like maturity, loan amount and interest rate, as we see in the data.

14The function η is taken as given by agents but will be endogenously determined from the matching
technology. The function maps αm, which is increasing in the market thickness (the ratio of lenders to
borrowers), to ηm, which is decreasing in the market tightness. Market tightness is endogenously determined
by the entry of lenders. η′ < 0 implies congestion and η′′ > 0 implies diminishing congestion.
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which states that competitive lenders enter a market until they break even. Finally, the
homebuyer chooses to borrow or not by solving max{Uλ, vλ − rp}.

3.2 Solution

3.2.1 Optimal default

We solve the model using backward induction. The first step is to characterize the optimal
default strategy. There are two relevant debt limits that determine how risky a mortgage is:

Lemma 1 (Optimal default strategy). Given a loan contract m = (l, b, µ), the optimal default
time τ∗m that solves problem (2) is:

τ∗m =


∞ (no default) if B ≤ Bsafe or T ≥ Tµ

T (default at disaster) if B ∈ (Bsafe, Brisky] and T < Tµ

0 (default immediately) otherwise

,

where B = b
1+µ is again the loan balance, and the debt limits are given by:

Bsafe ≡ h− d+ f < Brisky ≡ h− µ

1 + µ

λ

1 + λ
d+ f. (7)

We provide all proofs in the Appendix. Intuitively, the safe-debt limit is where the borrower
is indifferent between repaying and defaulting when the disaster hits at t = T . The risky debt
limit is where the borrower is indifferent before the disaster (at any t < T ). Any mortgage
with B ≤ Bsafe is safe (zero default risk) and any mortgage with Bsafe < B ≤ Brisky is risky
(the loan will be defaulted at the disaster date). Any mortgage with B > Brisky will incur
immediate default and will not be approved by lenders in equilibrium.

Given Lemma 1, the borrower’s expected gain from the mortgage contract is given by

Vλ(m)− vλ =



−B if B ≤ Bsafe

− 1 + µ

1 + µ+ λ
B︸ ︷︷ ︸

PV of debt repayment

− λ

1 + µ+ λ
(h− d+ f)︸ ︷︷ ︸

PV of collateral loss & cost at default

if B ∈ (Bsafe, Brisky]

−vλ − f otherwise

,

(8)
and similarly for the lender’s expected value of the mortgage’s repayment stream:

Rλ̄(m) =



B if B ≤ Bsafe

1 + µ

1 + µ+ λ̄
B︸ ︷︷ ︸

PV of repayment stream

+
λ̄

1 + µ+ λ̄
(h− d)︸ ︷︷ ︸

PV of collateral seized at default

if B ∈ (Bsafe, Brisky]

rp otherwise

. (9)
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3.2.2 Optimal mortgage

Given lenders’ free-entry condition (6), the borrower’s problem (5) can be rewritten as:

max
α

α ·
{
max
m

S(m)− κ(µ)− κ0
η(α)

}
,

where S(m) denotes the joint surplus from m (before the lender’s service and fixed costs):

S(m) ≡ Vλ(m)− vλ + rl︸ ︷︷ ︸
borrower’s expected surplus

+ Rλ̄(m)− rl︸ ︷︷ ︸
lender’s expected surplus

.

With the block-recursive structure of the competitive search environment, we first solve for
the optimal contract m∗, which is simply the contract that maximizes S(m)− κ(µ); then we
solve for the leverage probability α∗ ≡ αm∗ that arises from the competitive search.

The joint surplus S(m) under the optimal default time τ∗ features the three cases as in
the above. In the first case (B ≤ Bsafe), the loan balance is so low that the borrower will
never default. The mortgage contract essentially redistributes the cash flow l and b between
the borrower and the lender, and no joint surplus is created. Contracts in this region are
dominated by no borrowing at all, due to the operational and fixed costs κ and κ0.15

In the third case (B > Brisky), the loan balance is so high that the borrower finds it optimal
to default right after taking on the loan at t = 0, which is essentially to sell the house at the
liquidation price p. The joint surplus is negative because it involves a dead weight loss, and
thus contracts in this region are also dominated by no borrowing at all.

In the remaining and most interesting case (Bsafe < B ≤ Brisky), the loan balance is
sufficiently high that the borrower will optimally default (only) when the disaster hits. The
joint surplus under the optimal default time τ∗m = T becomes:

S(m) =

(
1

1 + µ+ λ̄
− 1

1 + µ+ λ

)
b︸ ︷︷ ︸

net gain from the maturity channel

−
(

λ

1 + µ+ λ
− λ̄

1 + µ+ λ̄

)
(h− d)− λf

1 + µ+ λ︸ ︷︷ ︸
net loss from the costly default channel

. (10)

Equation (10) highlights two opposite channels:

Maturity channel (new) The first term of (10) captures the expected net gain from trad-
ing a defaultable loan with long maturity. Both the borrower and lender know that, given
the borrower’s optimal default strategy, the repayment stream of b will end at date T ∧ Tµ.
However, given her belief of the arrival rate of the disaster, the borrower’s PV of this repay-
ment stream is b

1+µ+λ , while the lender’s PV is b
1+µ+λ̄

. The maturity channel—represented by
the difference between the two valuations—is positive when the borrower is more pessimistic
than the lender (λ > λ̄). Here, the borrower believes that the default time will arrive sooner
and hence the actual repayment will be shorter than what the lender believes. The maturity

15When we introduce another reason for trade beside belief disagreement, for example, by assuming lenders
having a lower cost of funding than the borrower, then a safe mortgage with B ≤ Bsafe can occur in equilibrium
for a relatively optimistic borrower (Section 4.6).
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channel is stronger at longer maturities, i.e., the net gain term decreases in µ; for example,
the term converges to zero when the contract matures immediately (µ → ∞), as the long-run
risk becomes irrelevant for such a short-term mortgage.

Costly default channel (conventional) The second term of (10) is standard in static
models of collateralized debt with heterogeneous beliefs. It captures the expected net losses
due to default due to the foreclosure cost (− λf

1+µ+λ) and due to the surrender of the collateral

(−
(

λ
1+µ+λ − λ̄

1+µ+λ̄

)
(h−d)). While both the borrower and lender agree that the value of the

house becomes (h−d)/r once the disaster hits, they disagree on how soon it will. A relatively
more pessimistic borrower (λ > λ̄) discounts the disaster event with a higher probability than
the lender does ( λ

1+µ+λ > λ̄
1+µ+λ̄

).

Leveraging the disagreement Summing up, the maturity channel and the costly default
channel have opposite signs and opposite implications to the optimal maturity. Whether the
maturity channel dominates depends on the strength of belief disagreement. To see this,
note that whenever the borrower is more pessimistic (λ > λ̄), the optimal mortgage contract
maximizes the maturity channel in (10) by maxing out the loan balance at the risky debt
limit, i.e., B∗ = Brisky. In this case, the surplus S(m) collapses to ∆

1+µ+λ̄
, where ∆ is a belief

disagreement term given by:

∆ ≡ λ− λ̄

1 + λ
d− λ̄f = (1 + λ̄)

(
vλ̄ − vλ − λ̄

1 + λ̄
f

)
. (11)

The term ∆ is positive if and only if the borrower is sufficiently pessimistic: λ > λ∗, where

λ∗ ≡

λ̄ d+f
d−λ̄f

if d > λ̄f

∞ otherwise
. (12)

Note that λ∗ is increasing in the foreclosure cost. If f = 0, then λ∗ = λ̄, implying that there
would be a positive joint surplus as long as the borrower is more pessimistic than the lenders
(λ > λ̄). Otherwise, f > 0 implies λ∗ > λ̄.

The following proposition characterizes the equilibrium contract, based on the house’s
disaster risk exposure d and buyer belief λ:

Proposition 2 (Optimal mortgage).

1. If the house is sufficiently at-risk (d > λ̄f) and the homebuyer is sufficiently pessimistic
(λ > λ∗), then the homebuyer will borrow. The optimal mortgage contract features
binding risky debt limit B∗ = Brisky. The optimal maturity rate µ∗ solves:

max
µ≥0

[
∆

1 + µ+ λ̄
− κ(µ)

]
. (13)
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and the leverage probability α∗ solves:

Mλ ≡ max
α∈[0,1]

α ·
[

∆

1 + µ∗ + λ̄
− κ(µ∗)− κ0

η(α)

]
. (14)

2. Otherwise (d ≤ λ̄f or λ ≤ λ∗), the homebuyer will not borrow.

Figure A1 illustrates two key characteristics according to Proposition 2. Panel a and b
plot the leverage probability α∗ and the maturity rate µ∗ as functions of the borrower’s belief
λ, respectively. When the borrower is sufficiently pessimistic (λ > λ∗), the novel maturity
channel dominates the traditional costly default channel, and the optimal leverage increases
in the degree of the borrower’s pessimism in the following senses. At the extensive margin,
the leverage probability α∗ is strictly positive and strictly increasing in λ when λ > λ∗, and
the probability is zero when λ ≤ λ∗. At the intensive margin, the maturity rate µ∗ is strictly
decreasing in λ (longer maturity) when λ > λ∗.

Given the tractability of the model, we further have:

Corollary 3 (Comparative statics). The following table characterizes the comparative statics
(partial derivatives) with respect to λ and d for the optimal maturity rate µ∗, loan approval
probability α∗, loan amount l∗, and the implied loan rate r∗ ≡ Rλ̄(m)/l∗:

Belief Disaster exposure
∂µ∗

∂λ
∂α∗

∂λ
∂l∗

∂λ
∂r∗

∂λ
∂µ∗

∂d
∂α∗

∂d
∂l∗

∂d
∂r∗

∂d

At-risk house & pessimistic buyer (d > λ̄f, λ > λ∗) − + ? ? − + ? ?
Otherwise 0 0 0 0 0 0 0 0

Note: + means ≥ 0, − means ≤ 0, ? means ambiguous.

The comparative statics for the loan amount l∗ is ambiguous due to two opposite forces.
On the loan demand side, more pessimism (a higher λ relative to a fixed λ̄) implies more
gain from trade and hence more incentive for the homebuyer to borrow. On the loan supply
side, a higher λ implies a lower homebuyer’s valuation of the asset vλ, which in turn lowers
their willingness to repay and lenders’ willingness to lend. Similarly, a change in the disaster
exposure d would have two opposite effects on the loan amount. Since the implied loan rate
r∗ is directly related to l∗, it follows that the comparative statics for r∗ is ambiguous.

4 Model extensions

The following extensions show the flexibility of our model and the robustness of its results.

4.1 Disaster insurance

This extension allows for disaster insurance. The baseline results continue to hold as long
as insurance coverage is incomplete or the premium is not too high—two conditions that are
realistic in the relevant empirical context of flood insurance in the U.S. (Section 6.3).
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Assume that at each date t before the disaster, the homebuyer has access to a disaster
insurance program with an exogenous coverage c (think of the National Flood Insurance Pro-
gram, or NFIP) and exogenous premium rate rλI . The insurance reduces the disaster damage
from d to d − c, with c representing the pay out by the insurer when the disaster hits at
T . The program charges a premium of rλIc per each date t < T (where λI can be viewed
as the “effective belief” of the insurer revealed by the premium). Under this program, the
homebuyer’s PV of the stream of utility from an insured house is:

vIλ ≡ h− λ

1 + λ
(d− c)− λI

1 + λ
c = hI − λ

1 + λ
dI ,

where hI ≡ h−λIc and dI ≡ d−(1+λI)c denote the housing utility and disaster damage with
insurance.16 To focus on the plausible case where vIλ is decreasing in λ (i.e., the valuation of
the insured house is lower for a more pessimistic homebuyer), we assume that:

(1 + λI)c < d. (15)

This condition holds when insurance coverage is incomplete or the insurance premium is not
too high. It is consistent with the fact that there is a maximum coverage set by the NFIP
($250,000), and that the NFIP premium rates are highly subsidized (Kousky et al., 2017).

Mandatory insurance Let us first consider a simple scenario where insurance is mandatory
(think of the flood insurance requirement in the NFIP’s Special Flood Hazard Areas, see
Section 6.3). Then it is straightforward to show that the baseline results from Section 3.2
continue to hold, with parameters h and d replaced with hI and dI , respectively.17

Voluntary insurance Let us now consider the more complex scenario where insurance is
voluntary. In the same way that the agent cannot commit to repaying their debt, we suppose
that they cannot commit to buying insurance.18 For each date t, there are two stages. In
the first stage, the homeowner chooses whether or not to participate in the insurance program
by paying the insurance premium rλIc. In the second stage, should the disaster arrives, the
homebuyer will receive the insurance coverage if and only if she has paid the premium at the
beginning of the period. In this extension, we assume f = 0 to simplify the analysis.

An interesting insight that arises from this extension is a debt overhang effect : leveraged
households with risky debt have less incentive to invest in insurance, since the option to default
acts as a form of implicit insurance. If there is no mortgage balance, then the homebuyer

16The expression for the post-insurance damage parameter dI reflects the fact that when the disaster hits,
the insurance program reduces the damage from d to d − c, and the homebuyer stops paying the stream of
insurance premia, whose PV amounts to λIc.

17Similarly, if insurance is mandatory only when the home purchase is leveraged (but voluntary otherwise),
then the results continue to hold, with a slight modification. There will be a belief threshold λ∗ such that a
pessimistic homebuyer with λ > λ∗ chooses a risky mortgage (and is hence required to purchase insurance). A
homebuyer with λ < λ∗ but λ ≥ λI does not borrow and voluntarily purchases insurance. Finally, an optimistic
homebuyer with λ < λI does not borrow and buys no insurance.

18In practice, most flood insurance contracts are set on an annual basis, and prescribed homebuyers can
always have the option to not renew in the subsequent year.
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will purchase insurance if and only if the premium rate is sufficiently low such that λI < λ

(equivalently, when the homebuyer is relatively more pessimistic than the insurer). However,
when the homebuyer is indebted, her demand for insurance depends on the outstanding debt,
as summarized in the following lemma:

Lemma 4 (Debt overhang effect on insurance uptake). At any t < T ∧ Tµ, the borrower
chooses to purchase insurance if and only if λI < λ and B ≤ Bsafe

ins ≡ Bsafe +
(
1− λI

λ

)
c.

Remark 2. Lemma 4 implies that, all else equal, home equity (price minus mortgage balance)
is positively correlated with insurance uptake. This is consistent with the finding by Liao
and Mulder (2021), which documents a strong positive correlation between home equity and
insurance uptake using data aggregated across 271 MSAs between 2001 and 2015.

Appendix A.2.1 shows that the characterization of the equilibrium mortgage in Proposition
2 continues to hold, with risky debt limit Brisky

ins , and the belief threshold λ∗
ins and belief

disagreement term ∆ins slightly modified to take into account the insurance option.

4.2 Disaster assistance

This extension allows for government disaster assistance. An important source of financial
assistance specifically for mortgage borrowers comes from disaster loan forbearance programs
provided by the GSEs and federal agencies. They allow affected borrowers with federally-
backed mortgages to reduce or suspend their mortgage payments for a short duration, usually
up to a year, without incurring late fees (Kousky et al. 2020). In our model, a loan forbearance
program can be viewed as a reduction of the loan’s present value from B to e−rεB at the
disaster date T , where ε is the duration of forbearance (and (1 − e−rε)B is the fiscal cost of
this program). Thus, the forbearance makes the loan balance effectively contingent on the
disaster state. All agents rationally anticipate the forbearance at t = 0.

It turns out that the forbearance will strengthen our main results, as it provides another
reason why a pessimist might want to leverage and to use a long-term mortgage. The bor-
rower’s expected payoff Vλ(m) from a mortgage m now becomes:

Vλ(m) = vλ +



−B +
λ

1 + µ+ λ
(1− e−rε)B︸ ︷︷ ︸

borrower’s PV of forbearance

if B ≤ Bsafe

− 1+µ
1+µ+λB − λ

1 + µ+ λ
e−rε(h− d+ f)︸ ︷︷ ︸

PV of postponing the default

if B ∈ (Bsafe, Brisky]

as in the third region of (8) if B > Brisky

. (16)

There are two changes relative to equation (8): (i) a new term in the value of a safe mortgage,
representing the PV of the borrower’s gain from the forbearance, and (ii) a reduced PV of the
loss of default in the value of a risky mortgage, due to the borrower postponing the default to
enjoy the forbearance; both of these terms are discounted at the subjective probability λ

1+µ+λ .
Intuitively, the borrower can enjoy the forbearance only if the loan has not been defaulted, and
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the forbearance delays the incentive to default during the disaster period. Hence, forbearance
increases the borrower’s payoff via two channels: postponing the repayment to a safe mortgage
and postponing the default of a risky mortgage.

Using backward induction, Appendix A.2.2 characterizes the equilibrium, with the same
belief threshold λ∗. Above this threshold, the borrower continues to issue a risky debt with B =

Brisky as in Proposition 2. However, below this threshold, the borrower will issue a safe debt
with B = Bsafe, whose leverage probability and average maturity increase in the borrower’s
pessimism λ. Intuitively, the safe debt allows the borrowers to enjoy the forbearance. The
value of a safe mortgage increases in λ, as a more pessimistic borrower expects a sooner arrival
of the disaster forbearance program. The value also increases in the average loan maturity
(decreases in µ), as the borrower can enjoy the forbearance only if their loan has not yet
matured by the time the disaster arrives.

In sum, the anticipation of a forbearance program provides another motive for leverage,
further strengthening our theoretical prediction that pessimistic homebuyers are more likely
to leverage and to use a long-term mortgage.

Remark 3 (Disaster aid). Another source of government assistance is disaster aid, although in
practice, per-capita aid is often limited in both actual amounts19 and amounts expected.20 In
our model, aid can be viewed as a reduction of the disaster damage from d to dϵ ≡ (1 − ϵ)d.
As long as ϵ < 1, it is immediate to see that Proposition 2 continue to hold with d replaced
by dϵ, and the effects of ϵ are summarized in the comparative statics for d in Corollary 3.

4.3 GSEs’ guarantee

This extension introduces the GSEs’ guarantee program and formally shows how a guarantee
subsidy will encourage lenders to optimistically evaluate the risk exposure of a loan (and espe-
cially so when the loan has a long maturity). Appendix A.2.3 provides the details (Appendix
A.2.9 further extends the model to explicitly incorporate the securitization process).

Suppose at t = 0, after entering a mortgage contract m with a borrower, a GSE agent
can guarantee a fraction 1− θ of the mortgage repayment against the borrower’s default risk.
Here, the parameter θ ∈ [0, 1] represents the regulatory requirement that a lender retains some
“skin in the game” in the loan origination and distribution process (Keys et al., 2010). The
GSE agent charges the lender a guarantee fee (also known as “g-fee”) g ∈ [0, 1] per unit of
expected deficiency amount, until either the mortgage matures or the borrower defaults. The
case g < 1 captures an underpriced g-fee (below the actuarially fair cost); our benchmark
model in Section 3 is the special cases θ = 1 (no guarantee) or g = 1 (no subsidy).

19For example, FEMA provides post-disaster grants to households through the Individual and Household
Program, which has a cap of just over $30,000 per household, and the actual amount averages only a few
thousand dollars (e.g., below $9,000 for Hurricane Harvey) (Kousky et al., 2020).

20Homeowner expectations of post-disaster aid are modest. Based on calculations by the authors from
the 2021 FEMA National Household Survey, among homeowners who identified flooding as one of the “types
of disasters that would have the biggest impacts where you live,” while 78.5% expected to receive aid from
the federal government, only 32.9% expected to receive financial assistance from any external organization
(including federal, state, local, and tribal governments). More common were expectations of in-kind donations
of food, water, or temporary shelter. In addition, Bakkensen and Barrage (2022) find that residents expected
government assistance to cover less than 17% of flood damages.
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As shown in Appendix A.2.3, the characterization of the equilibrium mortgage in Propo-
sition 2 continues to hold with a modified belief threshold λ∗

GSE ≤ λ∗. As summarized in
the table below, an increase in g or in θ ultimately leads to lower risky mortgage origination,
lower leverage probability, and lower maturity in equilibrium, summarized in the below table.
Qualitatively, the comparative statics of g and θ follow the direction of λ̄, i.e., reducing the
g-fee or reducing the skin in the game has a similar effect as an increase in lenders’ optimism
in the benchmark model.

Guarantee fee Skin in the game Lender’s belief
∂µ∗

∂g
∂α∗

∂g
∂λ∗

GSE
∂g

∂µ∗

∂θ
∂α∗

∂θ
∂λ∗

GSE
∂θ

∂µ∗

∂λ̄
∂α∗

∂λ̄

∂λ∗
GSE
∂λ̄

+ − + + − + + − +

Note: + means ≥ 0, − means ≤ 0.

4.4 Rental

Our model is flexible enough to encompass the rental option. So far, we have imposed κ′(0) =

−∞ on the operational servicing cost, so that the equilibrium maturity has an interior solution
(µ∗ > 0), and the mortgage contract has a finite maturity. We now relax this assumption and
consider contracts with an infinite maturity. An infinite maturity contract can be loosely
interpreted as a rental contract, where the borrower is the renter, the lender the landlord, and
the payment in perpetuity b the per-period rent. When the disaster hits, instead of foreclosure,
the renter now terminates the rental contract, and we interpret f as the moving cost.

Formally, consider a lease contract mrent = (p− k, b, 0), where k is a deposit to the land-
lord.21 The renter’s optimization problem is a modification of the borrower’s problem (5):

U rent
λ ≡ max

mrent,α
α
[
−rk + Vλ(m

rent)
]
+ (1− α) (−rp+ vλ) , (17)

where Vλ is the same as before. A competitive landlord’s expected profit is also a modified
version of the lender’s free-entry condition (4):

κ0 + rp = η (α)
[
Rλ̄

(
mrent)+ rk − κ(µ)

]
+ [1− η (α)] rp,

where the landlord’s cost of posting a lease contract is κ0 + rp and Rλ̄ is the same as before.
The landlord has probability η(α) of finding a renter. Otherwise, the rental property is sold
at p for simplicity. The optimal lease contract solves:

max
α∈[0,1]

α

{
max
b,k

S
(
mrent)− κ(0)− κ0

η (α)

}
.

21For simplicity, we assume the deposit is non-refundable. The model can be adjusted for a refundable
deposit. Also, we assume competitive landlords with free entry (as was the case for competitive lenders). The
model can be adjusted to have a fixed measure of landlords as in Wright et al. (2021).
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The joint surplus from a given lease contract mrent is given by:

S
(
mrent) = Vλ

(
mrent)− vλ + r (p− k)︸ ︷︷ ︸

renter’s surplus

+Rλ̄

(
mrent)− r (p− k)︸ ︷︷ ︸
landlord’s surplus

.

The main results continue to hold, except that there will be an additional belief cutoff
threshold λ∗∗ ≡ (d+f)λ̄+κ′(0)(λ̄+1)2

d−fλ̄−κ′(0)(λ̄+1)2
> λ∗. In equilibrium, for an at-risk house (d > λ̄f):

1. An optimistic homebuyer (λ ≤ λ∗) chooses to not borrow;

2. A pessimistic homebuyer (λ∗ < λ ≤ λ∗∗) borrows using a risky mortgage contract (with
finite maturity, where the maturity rate µ∗ > 0 is as specified in baseline Proposition 2);

3. A very pessimistic homebuyer (λ > λ∗∗) rents, using the optimal lease specified above.

4.5 Endogenous housing price

This subsection extends the baseline model to endogenize the housing price p∗. Assume that
at t = 0, before the loan market search takes place, the homebuyer is matched with a seller,
and Nash bargaining determines the equilibrium housing price:

p∗ = argmax
p

(Uλ)
ζ(rp− vs)1−ζ , (18)

where p also enters the homebuyer’s utility Uλ in (5), ζ ∈ (0, 1) is their bargaining power, and
vs is the seller’s (exogenous) valuation of the house. We assume vs < vλ, so that the seller
wants to sell the house to the homebuyer. The solution to the bargaining problem is:

rp∗ = (1− ζ)vλ + ζvs︸ ︷︷ ︸
standard “hedonic” term

+ (1− ζ)Mλ︸ ︷︷ ︸
mortgage term

, (19)

where Mλ is the expected surplus from the optimal mortgage as derived in (14).

Proposition 5 (Housing price). The housing price p∗ is decreasing in the homebuyer’s disaster
belief λ, and decreasing in the disaster exposure d.

Proposition 5 states that, although pessimists have a higher expected mortgage surplus
Mλ, the effect of a lower subjective value vλ still dominates for asset pricing (see proof in
Appendix A.2.4). Consequently, the asset price decreases in the degree of pessimism and
disaster exposure. This is a testable implication that we also evaluate in the data.

4.6 Difference in funding costs

This section introduces another reason for trade that arises from heterogeneous funding costs.
It also clarifies the conceptual difference between heterogeneous beliefs and heterogeneous
discount rates. Suppose that lenders have a lower discount rate r̄ < r. This assumption
reflects the fact that in practice, banks have access to cheaper wholesale funding, such as the
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Fed funds market or commercial papers, while homebuyers do not. Using the same backward
induction logic, Appendix A.2.5 characterizes the equilibrium mortgage. There still exists a
belief cutoff λ∗

ω that a relatively pessimistic homebuyer (λ > λ∗
ω) will borrow with risky debt

B = Brisky. The cutoff λ∗ now is modified by the ratio of different discount rates, ω ≡ r/r̄ > 1.
The main difference is that even if the homebuyer is relatively optimistic (λ ≤ λ∗

ω) or the house
is relatively unexposed (d ≤ λ̄f), the homebuyer will borrow using a safe mortgage contract
with no default risk, B = Bsafe. They do so to reap the gain from borrowing at a relatively
lower funding cost. Hence, both risky and safe mortgages will be traded in equilibrium.

4.7 Comparison with the prediction in the literature

Our prediction contrasts with the standard prediction in models of heterogeneous beliefs that
optimists leverage more (Fostel and Geanakoplos 2008, 2015; Geanakoplos 2010; Simsek 2013).
The key mechanism is the endogenous maturity channel, which is absent in the standard
framework with an exogenously fixed maturity.

To see this more clearly, consider a modified case of our extended model in Section 4.6, but
assume the maturity of any mortgage contract is exogenously fixed at some T0. The homebuyer
can still choose the loan amount and repayment flow. A relatively optimistic homebuyer
(λ ≤ λ∗

ω) will leverage with a safe loan without default, as in Fostel and Geanakoplos (2015).
For a relatively pessimistic homebuyer (λ > λ∗

ω), who optimally chooses a risky loan, the
optimal leverage probability now solves:

α0 ≡ arg max
α∈[0,1]

α ·
{
(ω − 1)(vλ + f) + ω∆ωT0 −

κ0
η(α)

}
,

where ∆ω denotes the belief disagreement term modified by ω. Furthermore, suppose the
exogenous maturity is sufficiently short: T0 <

1−ω−1

1+λ̄
.

Then, by monotone comparative statics, the leverage probability α0 is decreasing in λ,
i.e., more pessimistic homebuyers are now less likely to leverage. Intuitively, when T0 is low,
the gain from maturity (captured by the term ∆ · T0) is relatively small, and the comparative
statics is dominated by the fact that the homebuyer’s PV of the flow of housing utility vλ is
decreasing in λ. In other words, the collateral channel dominates the maturity channel.

In summary, in this special case without the possibility of the borrower choosing a long-
term loan contract, our model would imply that optimists would be more likely to leverage,
consistent with the standard finding in the literature.

4.8 Belief convergence

Our results hold even when belief disagreement does not last forever. This extension allows
beliefs to converge in a simple way by introducing an exogenous news shock about the disaster
process.22 The news shock occurs at date Tn, which arrives at a commonly known rate rν.

22The news shock could represent, for example, the news of an important progress in climate science, which
significantly reduces the disagreement about the speed of sea level rise. One could potentially introduce belief
convergence in much more sophisticated ways, such as via a communication game as in Geanakoplos and
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For simplicity, we assume that upon its realization at Tn, the news shock reveals the true
arrival rate of the disaster. Hence, after the news shock, agents will have common knowledge
of the disaster arrival rate, and we denote this ex-post common belief by λ′. However, before
the news shock, agents do not know what λ′ will be, and they have different priors about
the distribution of λ′. For analytical tractability, we assume that λ′ can take two possible
realizations: λ′ ∈ {0, λ}. Before the news arrives, the borrower’s prior places a probability
weight of π ∈ (0, 1) on the “bad news” state λ′ = λ, and 1−π on the “good news” state λ′ = 0.
Similarly, the lenders’ prior places a probability weight of π̄ ∈ (0, 1) on the bad news. The
borrower has a more pessimistic prior than the lenders when π > π̄, and vice versa.

Hence, as in the baseline model, agents have heterogeneous prior beliefs at t = 0. However,
unlike in the baseline model, agents know that their beliefs will eventually converge at date Tn.
This leads to an interesting scenario: the realization of a bad news at Tn could trigger a default.
In the subgame before the arrival of the news, there will be a new debt limit below which the
borrower will not default immediately:

Brisky
news ≡ h− µπ

1 + µ+ (1− π) (λ+ ζ)

λ

1 + λ
d+ f > Brisky ≡ h− µ

1 + µ

λ

1 + λ
d+ f.

The optimal default time for any given loan balance B is:

τ∗m =



∞ (no default) if B ≤ Bsafe or T > Tµ

T (default at disaster) if B ∈ (Bsafe, Brisky] and T ≤ Tµ

T ∧ Tn(default at disaster or at bad news) if B ∈ (Brisky, Brisky
news ], T ∧ T bad

n ≤ Tµ

0 (default immediately) otherwise

,

(20)
where T bad

n denotes the date the bad news realizes.
The third region is new: if the loan balance is sufficiently large, then it is optimal for the

borrower to default upon the realization of bad news, even if the disaster has not arrived.
Debt in this region is riskier with a higher debt level (Brisky

news > Brisky) and a higher probability
of default (which happens when either the disaster or the bad news realizes).

Appendix A.2.6 shows that the main results continue to hold. A relatively optimistic
homebuyer with prior π ≤ π̄ chooses not to borrow in equilibrium. A relatively pessimistic
homebuyer (π > π̄) chooses a risky mortgage that solves a slightly more complex optimization
problem (45), which reflects the fact that the optimal loan balance will be either Brisky or
Brisky

news , depending on parameters. Focusing on the tractable case of f → 0, we can show that
the latter option dominates, and hence in equilibrium, the borrower chooses a risky mortgage
with B = Brisky

news and will default when either the disaster or the bad news hits.
In summary, this extension shows that our main results continue to hold, even if agents

know that beliefs will eventually converge after the realization of an exogenous news shock.

Polemarchakis (1982); however, interactions between agents do not necessarily lead to common beliefs when
agents have different and incomplete models of learning about uncertainty (Mailath and Samuelson 2020).
Leaving this complexity aside, we model belief convergence in a simple way via an exogenous news shock,
following the literature in macroeconomics (e.g., Barsky et al. 2015).
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However, there is an added layer of complexity, as the realization of a bad news shock could
trigger equilibrium default through a repricing shock.

4.9 Deterministic maturity

Appendix A.2.7 provides a robustness check when mortgage maturity is deterministic instead.

5 Empirical analysis

In this section, we now test the model’s implications, as summarized in Table 1.

Pessimistic homebuyer (λ > λ∗) Otherwise
& exposed house (d > λ̄f)

Housing price lower higher
Leverage probability higher lower
Maturity longer shorter

Table 1: Main testable implications of the model.

5.1 Data

We develop an original large-scale dataset of coastal property sales along the U.S. East Coast
from 2001 to 2016, along with the associated mortgage information for each transaction, and
the exposure to sea level rise (SLR) risk for each property.

We leverage an extensive proprietary set of real estate transactions data from CoreLogic,
a data provider that compiles a thorough record of property tax roll information and deed
transactions. The tax roll information includes transaction prices and property characteristics,
including square feet of the lot, number of bedrooms, building age, and address. The deeds data
contain comprehensive information on any mortgage contract associated with a transaction,
including the loan maturity and amount at origination, the lender, and other characteristics.

CoreLogic provides each property’s precise coordinates. This allows us to compute each
house’s distance to the nearest coast (and also each house’s precise SLR risk exposure, as to
be described below). We restrict attention to single-family properties that lie within 1km of
the coast. We exclude outlier transactions with sale prices under $50,000 or over $10,000,000,
and exclude transactions with unavailable property characteristics.

To exploit the spatial variation in exposure to SLR risk and define our key independent vari-
able SLRi, we utilize state-of-the-art maps from NOAA’s SLR Viewer. These high-resolution
maps allow us to extract property-specific exposure to permanent coastal inundation, projected
under various SLR levels. NOAA utilizes a bathtub-style model to project future inundation
based on local land elevation, local and regional tidal variability, topographical variation, and
hydrological connectivity. Note that this SLR product is not based on potentially endogenous
factors such as land subsidence or future mitigation efforts that could be confounded by local
economic conditions. Based on each property’s latitude and longitude, we determine whether
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the property will be inundated with x feet of SLR, where x ∈ {1, 2, . . . , 6}. We also obtain each
property’s minimum bare-earth elevation as a control variable from First Street Foundation.

For climate beliefs, we utilize data from the 2014 Yale Climate Opinion Survey (Howe et al.
2015). This innovative dataset provides estimates of the average beliefs about climate change
among the adult population in each county, based on >13,000 individual responses to their
national survey across multiple waves since 2008. The Yale dataset has been widely used in
the climate finance literature to estimate climate beliefs (e.g., BGL, BGY, Keys and Mulder
2020; Goldsmith-Pinkham et al. 2021; Bakkensen and Barrage 2022). Our benchmark proxy
measure of the climate belief of a buyer in a transaction is the percentage of people in the
buyer’s county who answered “yes” to whether they believe that climate change is happening.
We provide a series of robustness checks with alternative belief data sources and specifications
in Section 6.1. We also include a suite of county-by-year level socioeconomic and neighborhood
variables as additional controls, listed in Appendix B.1.

Table A1 provides the summary statistics of selected key variables. The final sample
contains 1,582,525 transactions. It is worth noting that the houses in our sample are relatively
expensive, with an average sale price of $419,337, nearly 45% higher than the national average
over the same period ($288,742). Also nearly 40% of the transactions are purchased without
a mortgage (i.e., “bought with cash”). This is consistent with the fact that buyers of coastal
properties tend to be wealthier on average (Kahn and Smith 2017; Bakkensen and Ma 2020).

Remark 4 (East Coast). We focus on the East Coast for several reasons. The rate of SLR is
especially high in the East Coast (e.g., twice as fast as that in the West Coast in the next three
decades, Sweet et al., 2022), and the East Coast houses a significant fraction of capital stock
in SLR harm’s way.23 Furthermore, while the Gulf Coast also experiences substantial SLR
risk, the risk of coastal inundation there is confounded by land subsidence due to endogenous
economic factors (oil and gas extraction and groundwater depletion).24

Remark 5 (NOAA). While the NOAA SLR data publicly provides maps of areas projected to
be inundated at specific heights of SLR (e.g., 3 feet), it does not provide projections on the
speed of SLR (e.g., when 3 feet of SLR is expected). In fact, there is substantial uncertainty
regarding the speed of SLR.25 Thus, our working assumption is that while NOAA’s SLR maps
are common knowledge, there is significant belief heterogeneity about the speed of SLR. This is

23For example, it was estimated that by 2100, under the 2014 National Climate Assessment “high scenario,”
more than $1.07 trillion of residential and commercial properties will be at risk of chronic flooding (Dahl et al.,
2018) and more than 80% of these properties are located along the East Coast.

24For example, Ohenhen et al. (2024) estimate that between 23% and 35% of Gulf Coast inundation by
2050 will be due to land subsidence and not SLR; the subsidence rates are far smaller elsewhere in the U.S.

25For example, it is not highly controversial that a home at one foot elevation would be permanently
inundated if two feet of SLR occurred. In contrast, there is significant uncertainty and disagreement surrounding
the time at which seas will rise enough to inundate a house. The Intergovernmental Panel on Climate Change
(IPCC) concludes that while it is “virtually certain” that mean global sea level will rise over the coming
century, there is considerable uncertainty regarding the rate at which it will occur. Under the most moderate
GHG emissions scenario (SSP1-2.6), the IPCC predicts an increase of 1.05-2.04 feet (0.32-0.62 meters) SLR
in 2100 relative to 1995-2014. In contrast, the very high SSP5-8.5 scenario predicts 3.22-6.18 feet of SLR
(0.98–1.88 meters) by 2100. In addition, the IPCC do not rule out SLR above 6.56 feet (2 meters) by 2100
given uncertainties surrounding modeling parameters like the melting of ice sheets (Masson-Delmotte et al.,
2021). See https://www.ipcc.ch/srocc/ for more detail. Note also that we do not need any particular climate
belief to be correct in order for our results to hold but rather just that disagreement exists.
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consistent with the setup of our model where disaster risk exposure d is common knowledge,
but agents have different beliefs about how soon the disaster will arrive.

5.2 Econometric specifications

Housing price. To set the stage for our main empirical analysis, we begin by revisiting the
literature’s previous findings regarding the effects of SLR risk on property prices. Based on
BGL (Bernstein et al. 2019), we adopt the following specification:

lnPriceit = βPSLRi + ϕ′
PXi + θ′PZct + ΛP

ZDEBM + ϱP + ϵPit . (P0)

Throughout, lnPriceit denotes the natural log of the transaction price of residential property
i sold in month-year t. SLRi denotes property i’s SLR risk exposure. Following BGL and
BGY, we define SLRi as equal to one if property i is predicted to be underwater if the sea level
rises by six feet, and zero otherwise (we will use more refined definitions of SLR risk in various
robustness exercises). Xi is a vector of property-level controls (age and square footage), and
Zct is a vector of controls at the county-by-year level of the buyer’s previous residence (average
income and population of the buyer’s county).26 Finally, ϱP is a constant, and ϵPit is the error
term, which we cluster at the ZIP code level.

Crucial for our identification, ΛP
ZDEBM denotes a rich set of fixed effects that allow us to

exploit the high-resolution spatial variation in SLR exposure by comparing transactions within
the same ZIP code (Z), distance to coast bin (D), elevation bin (E), number of bedrooms
(B), and time (year and month; M) of sale.27 Our identification assumption is that with these
controls, SLRi is uncorrelated with ϵPit and therefore βP is a plausible estimate of the effects
of SLR exposure on house prices.

Figure 3 provides an example the high-resolution spatial variation of exposure to inundation
risk under a scenario of six feet of SLR for Chesapeake, Virginia. We compare the transaction
outcomes of properties that are very similar but with one more exposed to future climate-
related risks than the other. In this illustration, all five properties are within the same ZIP
code, same distance bin to the coast, same elevation bin, have the same number of bedrooms,
and the same month and year of transaction corresponding to the level of variation of our Z ×
D × E × B × M fixed effects. However, the properties located at points B, C, and E (which
lie inside the predicted inundation area) are more exposed to future climate-related risks than
the properties located at points A and D.28

In line with our model (Proposition 5) and the previous literature, we hypothesize that:
26In our sensitivity analysis in Section 6, we include the aforementioned host of additional control variables,

which are available for later years in our sample.
27Following BGL, we use nonlinear bins for the distance from the East Coast: 0 – .01 miles, .01 – .02 miles,

.02 – .08 miles, .08 – .16 miles, and more than .16+ miles, and we use two-meter elevation bins.
28Another advantage of the high-dimension fixed effects is that they reduce the concern that other types

of natural disaster risks can confound our analysis. Under the ZIP code × distance to coast × elevation fixed
effects, a potentially confounding variation in another type of disaster risk would need to vary across properties
at this fine of a spatial scale and be correlated with SLR risk. However, most other types of disaster risks such
as earthquakes, hurricane winds, wildfires, tornadoes or extreme precipitation tend to not vary as much across
localized spatial unit relating to SLR.
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Figure 3: Illustration of our empirical identification strategy in Chesapeake, Virginia. Five
properties (points A through E) that are within the same ZIP code, same distance bin to
the coast, same elevation bin, having the same number of bedrooms, and having the same
month and year of transaction. Properties B, C, and E are expected to be inundated under
six feet of SLR rise whereas properties A and D are not. Light blue shaded areas correspond
to areas that are predicted to be inundated with six feet of SLR. Dark blue shaded areas are
currently inundated waterways. (Sources: authors’ calculations, based on NOAA SLR Viewer
and CoreLogic data; property locations are adjusted for illustration purposes and do not reveal
locations of actual observations).

Hypothesis 1 (βP < 0). All else equal, at-risk properties (SLRi = 1) sell at a discount
(relative properties with SLRi = 0).

Going deeper, we re-investigate the literature’s findings on the effect of heterogeneous
climate beliefs in the pricing of SLR risk via the following specification:

lnPriceit = βPSLRi + δPPessBuyerc + γPSLRi × PessBuyerc

+ ϕ′
PXi + θ′PZct + ξ′PSLRi × Zct + ΛP

ZDEBM + ϱP + ϵPit . (P1)

Here, PessBuyerc is an indicator variable equal to one if the average climate belief in the
county c = c(it) where the buyer of property i at date t comes from is above the sample median
and zero otherwise.29 We interpret PessBuyer = 1 as an indicator of a likely pessimistic
homebuyer. Based on Proposition 5 and the previous literature, we further hypothesize:

Hypothesis 2 (γP < 0). The SLR discount is stronger in transactions with more pessimistic
homebuyers.

To control for potentially confounding factors that could correlate with climate beliefs, we
include the interaction terms between SLR and the buyer county-by-year level controls (the
population and average income of the county where the buyer comes from), as represented by

29We utilize a binary version of climate beliefs and SLR risk for several reasons. First, we follow Bernstein
et al. (2019) in our main specification definition of SLR risk (SLR = 1 if inundated with 6 feet of SLR, 0
otherwise) for ease of comparison across existing literature. In addition, similar to Bakkensen and Barrage
(2022), we discretize our beliefs variable for ease of interpretation and connection to our theoretical model
given the discrete predictions (e.g., behavior of pessimists versus optimists). Finally, to the extent that there
may be measurement error in either variable, it is more conservative to discretize the variables instead of
including the fully continuous versions. Reassuringly, our results hold in our robustness exercises allowing for
more continuous versions of beliefs (e.g., quartiles in Table A3, more nuanced SLR definitions in Table A9).
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the term SLRi × Zct. We provide a battery of robustness exercises with alternative specifi-
cations of different cutoff thresholds and control variables, as well as alternative proxies for
climate belief in Section 6.1.

Leverage dummy (extensive margin). We now move to our main analysis of the effects
of SLR risks on mortgage outcomes. First, we evaluate whether SLR risk and climate beliefs
affect the likelihood that transactions are leveraged:

Leveragedit = βLSLRi + δLPessBuyerc + γLSLRi × PessBuyerc

+ ρL lnPriceit + ϕ′
LXi + θ′LZct + ξ′LSLRi × Zct + ΛL

ZDEBM + ϱL + ϵLit. (L1)

Here, Leveragedit is an indicator variable that is equal to one if the transaction on property i

at time t involves a mortgage and zero otherwise. As a benchmark, we include housing price
as a control variable (this is consistent with our model, where buyers choose a debt contract
given a housing price), but our results are robust to omitting it (see Section B.2.4). The
dummy PessBuyerc is defined as in (P1). Based on Table 1, we hypothesize that:

Hypothesis 3 (γL > 0). In transactions of at-risk properties, more pessimistic buyers are
more likely to leverage.30

Maturity (intensive margin). Next, we analyze the effects of SLR risks on the maturity
of mortgage contracts. For leveraged transactions (i.e., those associated with a mortgage con-
tract), we define LongMaturityit as an indicator equal to one if the maturity of the mortgage
contract for property i transacted at t is at least 30 years and zero otherwise.31 We then run
the following regression on the sub-sample of leveraged transactions:

LongMaturityit = βMSLRi + δMPessBuyerc + γMSLRi × PessBuyerc

+ ρM lnPriceit + ϕ′
MXi + θ′MZct + ξ′MSLRi × Zct

+ ΛM
ZDEBM + ΛL + ϱM + ϵMit . (M1)

Here, in addition to the set of fixed effects ΛZDEBM , we also include a lender fixed effect,
ΛL, to control for the possibility that different lenders may have varying tendencies to issue
different types of mortgage contracts.32 Based on Table 1, we hypothesize that:

30Recall from Proposition 2 that a sufficiently pessimistic buyer (λ > λ∗) purchasing a sufficiently exposed
property (d > λ̄f) should have high leverage probability and long maturity. This motivates why we include
the SLR dummy and its interaction with the pessimistic buyer dummy in the empirical specification.

31The distribution of mortgage maturity is bimodal: most contracts either have a fifteen-year or a thirty-year
term. In the main specification for (M1), we exclude the small sub-sample of transactions whose mortgages have
maturity terms that are neither 15 nor 30 years (less than 4% of our sample), which tend to be nonstandard
mortgage contracts. Our results are robust to the inclusion of these nonstandard observations.

32For transactions with more than one mortgage, we use the lender from the first mortgage for the lender
fixed effect. In our sample, all mortgage contracts associated with the same contract have the same maturity,
hence our LongMaturity dummy is well defined for these observations. As a robustness check, we also exclude
transactions with more than one mortgage and the results are unaffected.
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Hypothesis 4 (γM > 0). In leveraged transactions of at-risk properties, more pessimistic
buyers are more likely to pick a mortgage with long maturity.

Specifications (L1) and (M1) are our main regression equations. We estimate them using
the ordinary least squares (OLS) estimator.33

5.3 Results

5.3.1 Setting the stage: Housing price

Table 2 reports the results for housing price regressions (P0) and (P1). To appreciate the
importance of controlling for amenity values, column 1 shows the estimates from a naïve
regression that does not include our rich set of fixed effects. It shows a positive and significant
correlation between SLR risk and price. This is not surprising: properties exposed to SLR risk
also tend to be close to the coast, and coastal properties tend to have higher amenity values.

log(Housing Price)

SLR Risk 0.219*** -0.060*** -0.039*
(0.028) (0.022) (0.021)

SLR Risk × PessBuyer -0.059***
(0.018)

Property & buyer county controls Y Y Y
Z × D × E × B × M fe Y Y
Buyer county controls × SLR Y
N 1,583,238 406,601 406,601
R2 0.335 0.866 0.867

Table 2: Effects of exposure to SLR risk and its interaction with climate belief on housing
prices. SLR Risk indicates whether a property’s location will be inundated with six feet of
SLR. PessBuyer indicates whether the buyer is from a county where the fraction of respondents
in Yale Climate Opinion Survey stating that they believe global warming is happening is above
the sample median. Z×D×E×B×M indicates ZIP code × distance to coast bin × elevation
bin × number of bedrooms × time (transaction month-year) fixed effects. Property controls
include age and square footage. Buyer county controls include average county income and
county population. Sample: transactions of single-family homes within 1km from the East
Coast between 2001 and 2016. See Section 5.1 for more data descriptions. Standard errors in
parentheses are clustered at the ZIP code level; * (p < 0.1), ** (p < 0.05), *** (p < 0.01).

Column 2, which corresponds to specification (P0), then includes our rich set of fixed
effects, and the sign of the estimated coefficient flips to be negative. It shows that, all else
equal, a property expected to be inundated with six feet of SLR is priced about 6% lower than
an otherwise equivalent but unexposed property. In other words, the “SLR discount” is around
6%. The estimate is statistically significant (p < 0.01), and the magnitude is very similar to
the benchmark estimates of 5 to 6.6% in BGL. Thus, column 2 replicates the recent finding in
the literature that the coastal property market is discounting future SLR risks.

33We utilize the OLS estimator given concerns over implementation and bias of fixed effects in nonlinear
models, including the probit and logit models (Greene et al., 2002).
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Column 3, which corresponds to specification (P1), shows that the extent of the pricing of
SLR risk varies: much of the discounting of SLR risk is driven by transactions with pessimistic
homebuyers. The SLR discount is nearly 10% (≈ 3.9 + 5.9) among transactions with likely
pessimistic buyers, while the discount is only 3.9% among transactions with the other group of
buyers. This result of the variation in the pricing of SLR risk based on buyers’ climate beliefs
is consistent with that in BGY.

Having replicated the literature’s findings on the SLR discount in housing prices (summa-
rized by Hypotheses 1 and 2), we now move on to our main results on mortgage outcomes.

5.3.2 Extensive margin: Leverage probability

Leveraged

SLR Risk -0.093*** 0.021*** -0.004 -0.003
(0.008) (0.007) (0.007) (0.014)

SLR Risk × PessBuyer 0.047*** 0.034***
(0.009) (0.011)

Moderate SLR Risk 0.003
(0.014)

High SLR Risk -0.035
(0.031)

Moderate SLR × PessBuyer 0.026**
(0.011)

High SLR × PessBuyer 0.083***
(0.023)

Log Housing Price 0.064*** 0.161*** 0.161*** 0.161*** 0.162***
(0.006) (0.010) (0.010) (0.010) (0.010)

Property & buyer county controls Y Y Y Y Y
Z × D × E × B × M fe Y Y Y Y
Buyer county controls × SLR Y Y
N 1,580,756 405,893 405,893 405,893 405,893
R2 0.019 0.473 0.473 0.473 0.473

Table 3: Effects of exposure to SLR risk and its interaction with climate belief on Leveraged,
an indicator for whether the transaction is associated with a mortgage. Moderate SLR Risk
(High SLR Risk) indicates whether a property’s location will be inundated with > 3 to ≤ 6
feet of SLR (≤ 3 feet of SLR). See Table 2 for the definitions of the remaining variables.

Table 3 reports estimates from regressions where the dependent variable is Leveraged—
the indicator variable equal to 1 if a transaction is financed with a mortgage contract and 0
otherwise. Again, column 1 shows a naïve regression that excludes the set of fixed effects.
The result shows a negative correlation between SLR risk exposure and leverage, suggesting
that transactions of at-risk properties are less likely to be financed with debt, consistent with
existing conventional views (e.g., Litterman et al. 2020; Brunetti et al. 2021).

However, the result reverses in column 2, where we include the rich set of fixed effects. The
estimate in column 2 shows that, in contrast to conventional wisdom, transactions of at-risk
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properties are about two percentage points more likely to be leveraged. The estimate is not
only statistically significant (p < 0.01), but also economically meaningful. To get a sense of
relative magnitude, note that the rise of leveraged transactions—measured by the fraction of
property transactions associated with mortgages in our data—from 2001 (the beginning of our
sample) to 2007 (the peak of the housing boom before the 2008 financial crisis) is about four
percentage points, or twice our estimated coefficient.

Crucially, column 3 corresponds to specification (L1) that tests Hypothesis 3. It shows
that the SLR-leverage association is driven by transactions with pessimistic homebuyers. The
estimate for the interaction term indicates that, among transactions with likely pessimistic
buyers, at-risk properties are about 4.7% more likely to be leveraged. The estimate for the
uninteracted SLR Risk term indicates that the association between SLR risk and the leveraged
dummy is negative but not statistically significant for the other group of homebuyers.

A potential concern for the specification in column 3 is that climate beliefs are correlated
with other factors that predict leverage outcomes.34 Column 4 repeats the benchmark regres-
sion in column 3 but includes the interaction terms between SLR and buyer county controls,
namely the population and average income of the county where the buyer comes from. The
estimate of SLR Risk×PessBuyer remains strongly statistically significant. The magnitude of
the coefficient reduces slightly to about 3.4%, but it is not statically different from before. In
Section 6, we show that the results are also robust to the inclusion of a wider variety of county-
level socioeconomic variables that become available for later years in our sample, including
political ideology, education, race and ethnicity, age, and gender as well as unemployment,
new building permits, crime statistics, and flood events from the property’s neighborhood.

Another potential concern is that the measure of SLR exposure is too coarse. In particular,
despite being a commonly used benchmark definition in the empirical climate literature, it is
very unlikely that the sea level will rise by six feet in the next thirty years.35 Column 5 aims
to address this concern. It repeats the exercises in column 4 but replaces the benchmark SLR
Risk indicator with a more refined measure of risk exposure: Moderate SLR Risk indicates
whether a property will be inundated with > 3 but ≤ 6 feet of SLR. Similarly, High SLR Risk
indicates whether a property will be inundated with ≤ 3 feet of SLR. The comparison group
is Low SLR Risk, indicating properties that will not be inundated even with six feet of SLR.
(Section 6.4 provides additional robustness checks regarding the SLR risk measure.)

Using the same base specification as columns 3 and 4, column 5 shows that the estimates for
the interaction between the SLR terms and the pessimistic buyer dummy are both positive and
statistically significant, while the estimates for the uninteracted SLR terms are not significant,
highlighting the importance of climate beliefs in this setting. Furthermore, the estimate of
8.3% for High SLR Risk × PessBuyer is larger and statistically different from the estimate of
2.6% for Moderate SLR Risk × PessBuyer. Consistent with our model’s comparative static

34Ideally, we would like to control for buyer-specific characteristics such as income, wealth, or credit score.
However, as described in Section 5.1, the only individual-level information we observe is the location that a
buyer comes from. Thus, we also include aggregated statistics from the buyer’s origin.

35However, it is plausible that properties inundated with six feet of SLR face higher climate-related risks
that will likely realize in thirty years, e.g., increased flooding from storm surges (Zhang et al. 2013).
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prediction on d in Corollary 3, the more exposed a property is, the higher the likelihood that
its transaction with a pessimistic buyer is going to be leveraged.

Overall, our findings on the relationship between SLR risk and leverage are consistent with
our theoretical prediction on the extensive margin of leverage (Proposition 2).

5.3.3 Intensive margin: Maturity

Long Maturity

SLR Risk -0.019*** 0.005 -0.004 0.002
(0.002) (0.005) (0.007) (0.014)

SLR Risk × PessBuyer 0.018*** 0.024***
(0.007) (0.007)

Moderate SLR Risk 0.006
(0.014)

High SLR Risk -0.028
(0.024)

Moderate SLR × PessBuyer 0.023***
(0.008)

High SLR × PessBuyer 0.031*
(0.019)

Log Housing Price 0.001 -0.003 -0.003 -0.003 -0.003
(0.001) (0.004) (0.004) (0.004) (0.004)

Property & buyer county controls Y Y Y Y Y
Z × D × E × B × M fe Y Y Y Y
Lender fe Y Y Y Y
Buyer county controls × SLR Y Y
N 822,890 150,746 150,746 150,746 150,746
R2 0.002 0.441 0.441 0.441 0.441

Table 4: Effects of exposure to SLR risk and its interaction with climate belief on Long
Maturity, an indicator for whether the mortgage term is at least 30 years. Lender fe indicates
lender fixed effects. Sample excludes transactions that do not have an associated mortgage
contract (for which the dependent variable is not well defined) and excludes nonstandard
mortgage observations where term is not 15 nor 30 years. The rest is the same as in Table 3.

With a similar structure to Table 3, Table 4 reports the estimates for regressions of the
long maturity dummy. Recall that these are results at the intensive margin of the mortgage
choice, as the dependent variable LongMaturity is only defined for transactions that have an
associated mortgage contract. As in previous tables, the first column shows a naïve regression
that has no fixed effects. There, the coefficient of SLR risk is negative and significant. However,
once the fixed effects are introduced in column 2, the sign of the estimated coefficient changes
sign and becomes statistically insignificant. Column 2 thus indicates that, on average, there
does not seem to be a significant relationship between SLR risk exposure and maturity.

A pattern emerges when we examine this relationship by category of buyers. Column
3, corresponding to specification (M1), shows that among leveraged transactions with likely
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pessimistic buyers, at-risk properties are about 1.8 percentage points more likely to be asso-
ciated with long maturity mortgage contracts (relative to leveraged transactions with likely
optimistic buyers). Column 4 repeats the exercise in column 3 but includes the interaction
terms between SLR and buyer county controls. The estimate for the interaction term remains
highly statistically significant, and the magnitude increases slightly to 2.4%.

Finally, column 5 repeats the exercise in column 4 but replaces the benchmark SLR Risk
indicator with the Moderate SLR Risk and High SLR Risk indicators. The pattern in columns 3
and 4 continues to hold with the more refined measure of SLR risk. The relationship between
SLR exposure and the long maturity dummy is not statistically significant. However, the
relationship becomes statistically significant when the SLR exposure is interacted with beliefs.
Among leveraged transactions with pessimistic buyers, mortgage contracts of properties with
moderate SLR risk are 2.3% more likely to have long maturity (p < 0.01), and those with high
SLR risk are 3.1% more likely (p < 0.1), relative to similar transactions optimistic buyers.

Overall, our findings are consistent with the model’s predictions: in purchases of at-risk
properties, likely pessimistic buyers are more likely to leverage (Hypothesis 3) and use debt
contracts with longer maturities (Hypothesis 4).

6 Robustness and further analysis

6.1 Climate beliefs

If climate optimists are more likely to sort toward coastal properties (e.g., Bakkensen and Bar-
rage 2022), then our county-level beliefs measure could be a biased proxy for individual-level
buyer beliefs, as the county-level measure would overestimate the level of climate pessimism
in our coastal buyers. While we cannot definitively rule out sorting over climate beliefs in this
setting, there are several reasons to believe it is not a dominant biasing force in our context.

First, Bakkensen and Barrage (2022) find that the county-level Yale Climate Opinion data
are strongly correlated (R̄2 = .999) with individual-level beliefs data collected through door-to-
door surveys in coastal Rhode Island.36 Second, if sorting was strong enough to confound our
results, we should find the SLR coefficient in our house sales price regressions to be attenuated
toward zero, given that climate optimists would pay more for a home at high SLR risk relative
to its value based on market fundamentals. Recall from Table 2 that we instead find a strong
and robust negative capitalization of SLR risk into home prices.

Nonetheless, since beliefs play a central role in our analysis, this section provides a battery
of robustness checks of our results to alternative definitions of the pessimistic buyer variable.

6.1.1 Inferring individual-level climate beliefs from home prices

Rather than relying on county-level averages based on survey data, we present a novel method
to impute the climate beliefs of the homebuyer in each transaction at the time of sale. The
underlying idea is that the housing price should reflect the homebuyer’s climate belief (recall

36This is from a small sample of 187 individual-level respondents across three counties.
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the model in Section 4.5). Hence, the extent to which the housing price capitalizes the SLR
risk should reveal the extent to which the homebuyer is concerned about the risk.37

Let λit denote the (unobserved) climate belief of the homebuyer in transaction it, where a
higher value of λit represents a higher level of climate pessimism. Based on specification (P1)
in Section 5.2, suppose that housing price is given by:

lnPriceit = βPSLRi + γPSLRi × λit + δPλit + controlsit + ϵλit, (21)

where the impact of the SLR risk on the house price contains the general SLR discount βP

(< 0), as well as the belief-moderated discount γP (< 0) for the interaction between the
SLR risk and the (unobserved) transaction-specific buyer belief term λit. The set of control
variables are the same as in (P1).38

To impute the unobserved λit, we first estimate the housing price without beliefs:

lnPriceit = βPSLRi + controlsit + ζit. (22)

We then predict the residual from equation (22) as ζ̂it. Note that moments of ζit are informative
about the unobserved belief λit, because ζit = γPSLRi×λit+δPλit+ϵλit according to equation
(21).39 Intuitively, if we observe a homebuyer paying a lower price for an identical property in
a location exposed to SLR risk, ceteris paribus, then they must be more pessimistic. Define
our imputed (cardinal) climate belief parameter as:

λ̂it ≡ −ζ̂it. (23)

Under the assumptions above, λ̂it is positively correlated with the unobserved climate pes-
simism λit of the homebuyer in transaction it. Finally, we define the (ordinal) dummy

̂PessBuyerit to be one if λ̂it is above the median predicted sample value and SLRi = 1,
and zero otherwise.40

Replacing the county-level dummy PessBuyerc with the transaction-level dummy ̂PessBuyerit

for whether the buyer in the transaction is a likely pessimist, we re-estimate the main mort-
gage regressions (L1) and (M1). As reported in Table 5, our result for the leveraged regression
continues to hold: largely consistent with our previous estimates in Table 3, pessimistic buyers
are 3.8% more likely to take out a mortgage (p < 0.01). Our long maturity result also holds,
with pessimistic buyers 1.3% more likely to have a 30-year mortgage (p < 0.1).

37In Section 4.5, we showed that price differences between optimists and pessimists are influenced by a
standard hedonic term—more negative for pessimists—and a mortgage term from the expected surplus of
an optimal mortgage contract—more positive for pessimists. Following existing literature (see a review in
Beltrán et al. 2018), we exclude the mortgage term for simplicity. However, as indicated by the significant
price difference estimated in Table 2, the impact of the mortgage term is likely minor.

38In particular, controlsit = ϕ′
PXi + θ′PZct + ξ′PSLRi × Zct + ΛP

ZDEBM + ϱP .
39Note that SLRi is a binary variable and γP and δP are scalar transformations of λit. From the findings in

Section 5.3.1, climate pessimists tend to pay less for an at-risk property relative to climate optimists (γp+δp <
0). Hence, ζ̂it can be used to proxy individual climate beliefs.

40Note that for transactions of properties with SLRi = 0, the interaction of SLRi with individual-level
belief λit does not matter for the choice of leverage and maturity, so without loss of generality, we can assign

̂PessBuyerit = 0 for these transactions.
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Leveraged Long maturity

SLR Risk -0.031 0.130**
(0.044) (0.059)

SLR Risk × ̂PessBuyer 0.038*** 0.013*
(0.009) (0.008)

Z × D × E × B × T fe Y Y
Property & buyer county controls Y Y
Buyer county controls × SLR Y Y
Lender fe Y
N 210,764 62,926
R2 0.440 0.442

Table 5: Robustness with alternative specifications for the belief measure using transaction-
level imputed beliefs. Beliefs are imputed following the procedure in Section 6.1.1. Column 1
reports results for leveraged regression (L1) and column 2 for long maturity regression (M1).
The rest of the table is the same as in Tables 3 and 4.

Furthermore, Table A2 provides the pairwise correlation between the continuous and binary
versions of our imputed λ̂it beliefs data and other beliefs specifications in this paper. Despite
the large differences in how λ̂it is imputed from real estate transactions relative to how the
Yale and Gallup beliefs are constructed from surveys, the pairwise correlations are significantly
and positively correlated (p<0.000) with almost all other beliefs specifications.41

Overall, our main results are robust to using imputed climate beliefs at the transaction
level. This gives us additional confidence that our main empirical findings are not purely
driven by the selection bias due to residential sorting.

6.1.2 Alternative specifications using Yale Climate Opinion data

Furthermore, Table A3 provides a series of robustness checks for benchmark regressions (L1)
and (M1) with alternative specifications for the the belief variable based on the Yale Climate
Opinion Survey. The set of controls and fixed effects remain as in the benchmark regressions.
For brevity, we only report the estimates for the relevant coefficients of the interaction term
between SLR Risk and the corresponding belief variable.

Columns 1 and 4 (Happening) use the benchmark (cross-sectional) 2014 Yale Climate
Opinion Survey data for the percentage of people in each county who say they believe climate
change is happening. Columns 2 and 5 (Worried) instead use the percentage who say they are
worried about climate change. Similarly, columns 3 and 6 (Timing) use the percentage who
think global warming will start to harm people in the U.S. within ten years. Row 1 uses the
PessBuyer variable for whether the buyer is from a county where the corresponding climate
belief variable is above the sample median, thus repeating our benchmark specification. Rows
2 to 4 rank counties into quartiles of the climate belief variable, and nth Quartile Belief is
equal to one if the buyer is from a county in that nth quartile of belief and zero otherwise.

41See Section 6.1.4 for a description of our Gallup data beliefs exercise.
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Here, the comparison group is the first quartile, namely those with the most optimistic beliefs.
Finally, row 5 uses the continuous measures of the belief variables: the fractions of the buyer’s
county saying that they believe climate change is happening, that they are worried about
climate change, or that they think that global warming will harm the U.S. within ten years.

Overall, our results consistently hold across this variety of climate beliefs specifications.

6.1.3 Omitted belief covariates

A related concern is that climate beliefs in the Yale survey could be correlated with other
individual-level unobservable characteristics that could confound the analysis. To address
these concerns, we include a variety of additional control variables in our main specifications.
In Table A4, in addition to income and population, we also include an expanded suite of
county-level control variables including data at the county-by-year level on the demographic
composition of the buyer’s county (gender, age, race/ethnicity, and education) as well as
local economic data from the property’s location (unemployment rate, test scores, arrests,
new building permits, and the count of previous flood events).42 In Table A5, in addition
to income and population, we include data on political affiliation (percent of Republican or
Democrat vote shares in the previous presidential election at the county level). As shown in
both tables, our main results are robust.

6.1.4 Beliefs using Gallup data

As additional robustness, we replicate the Yale Climate Opinions estimation approach using
survey data from Gallup’s annual environment poll to estimate a panel of climate opinions
at the county-by-year level. We utilize annual waves of Gallup survey data from 2000 to
2020, totalling 10,339 observations where climate beliefs are elicited.43 In parallel with the
Yale climate beliefs estimation methodology described in Howe et al. (2015), we model beliefs
based on respondent age, race and ethnicity, education, gender, as well as state and year fixed
effects. We then use the model results to predict climate beliefs at the county-by-year level,
based on county-by-year level averages of these socioeconomic variables.

Finally, we define PessBuyer to be equal to one if the buyer in a transaction i in year
y is from a county where the predicted belief is greater than or equal to the median sample
belief level in that year y, and zero otherwise. Table A6 displays the Gallup beliefs model
replicating our leverage and maturity results, which are very similar to our main results.

42Since test score data and other data are only available for a subset of years, our sample for this robustness
check covers years 2009 to 2016.

43We utilize the question on the timing of climate beliefs that asks “Which of the following statements
reflects your view of when the effects of global warming will begin to happen: they have already begun to
happen, they will start happening within a few years, they will start happening within your lifetime, they will
not happen within your lifetime, but they will affect future generations, (or) they will never happen]?” For an
additional check, we also estimate beliefs based on how worried the respondent is regarding climate change.
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6.1.5 Placebo test

As a final check for beliefs, we examine the role of climate beliefs for transactions with low SLR
risk. Given our identification strategy, climate beliefs should not impact mortgage behaviors
in these transactions. Thus, we re-estimate our main results for the subset of homes where
SLR = 0 in Table A7. Reassuringly, we find that climate beliefs have no predictive power.

6.2 Securitization

Thus far, we have focused on testing the main implication of the model regarding the belief
heterogeneity across homebuyers (the λ’s in our model). However, the main driving force in
the model is the disagreement between lenders and borrowers (the difference between λ̄ and
λ captured by ∆). To further check this mechanism, we consider an important institutional
detail that could lead banks to behave as if they are more optimistic about future climate risks.
Ouazad and Kahn (2022) have highlighted a mechanism through which mortgage lenders can
potentially shift climate risks to government-sponsored enterprises (GSEs): by approving and
securitizing mortgages that are below the conforming loan limit, which are eligible to be sold
to the GSEs. Doing so would be profitable to mortgage lenders if mortgage securities exposed
to the SLR risks are mispriced, as the GSEs’ securitization rules and guarantee fees tend to
only reflect current official floodplain maps and not future SLR risks.

This securitization mechanism is potentially relevant and complementary to our theoret-
ical and empirical findings. Suppose it is true that mortgage lenders can securitize and sell
conforming mortgage contracts to the GSEs, then we should expect that our mechanisms to
strengthen in the segment of conforming loans:

Hypothesis 5. The leverage and maturity channels are stronger among the subsample of
conforming loans than among nonconforming loans (γconforming

L > γnonconforming
L , γconforming

M >

γnonconforming
M ).

We investigate this securitization mechanism in Table 6. We collect data on Fannie Mae
and Freddie Mac conforming loan limits for single-unit single-family homes across our data
sample from 2001 to 2016. We then match each property with the conforming loan limit in
the county and year of purchase (see Appendix B.1 for details). In column 1, we repeat the
main leverage regression (L1), but replace the dependent variable with a dummy for whether
a transaction is leveraged and the mortgage is conforming. In column 2, we do the same
thing as in column 1, but replace conforming with nonconforming. Confirming Hypothesis 5,
the estimates for SLR × PessBuyer is positive and significant for the conforming leveraged
dummy (column 1). It is negative but not statistically significant for the nonconforming
leveraged dummy (column 2).

Similarly, we repeat the long maturity regression (M1) but replace the dependent variable
with a dummy for whether the leveraged transaction uses a long-maturity mortgage and the
mortgage is conforming (nonconforming) in column 3 (column 4). The estimates for SLR ×
PessBuyer are positive and significant for the conforming long-maturity outcome (column 3),
but negative and significant for the nonconforming long-maturity outcome (column 4).
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Overall, the results in Table 6 confirm Hypothesis 5.44

Leveraged & Long Maturity &
Conforming Nonconform Conforming Nonconform

SLR Risk -0.016 0.013* -0.009 0.007
(0.015) (0.007) (0.021) (0.013)

SLR Risk × PessBuyer 0.033*** -0.001 0.033*** -0.015**
(0.012) (0.004) (0.012) (0.007)

Property & buyer county controls Y Y Y Y
Buyer county controls × SLR Y Y Y Y
Z × D × E × B × M fe Y Y Y Y
Lender fe Y Y
N 406,601 406,601 182,771 182,771
R2 0.478 0.566 0.569 0.669

Table 6: Role of conforming loans. Column 1: dependent variable is whether a transaction
is leveraged and the mortgage is conforming. Column 3: restricting to leveraged sample,
dependent variable is whether the mortgage has long maturity and is conforming. Column 2
and 4 repeat columns 1 and 3, respectively, but replace conforming with nonconforming. For
brevity, only estimates of the coefficients of SLR Risk and the interaction term SLR Risk ×
Pessimistic Buyer are reported. The rest is the same as in Tables 3 and 4.

6.3 Flood insurance

A potential confounding factor is the presence of flood insurance in this setting. In the U.S.,
the flood insurance market is dominated (≥95% of policies) by the National Flood Insurance
Program (NFIP), which is managed by the Federal Emergency Management Agency (FEMA)
(Kousky et al., 2018). While we do not observe whether a property in our sample is covered
by flood insurance, we can proxy for insurance by using official floodplain maps. A property
inside one of FEMA’s Special Flood Hazard Areas (SFHAs) is required to have flood insurance
if it is purchased with a GSE-backed mortgage, and voluntary insurance uptake is low outside
of such areas (Kousky and Michel-Kerjan, 2017; Kousky et al., 2017; Sastry, 2021).

We match each property with its flood risk zone using NFIP Flood Insurance Rate Maps,
44We note three potential concerns about the conforming loan results. First, prior work has highlighted

concerns about mismeasurement of the conforming loan limit in empirical analyses (LaCour-Little et al., 2022).
In particular, the conforming loan limit could be misassigned if using the national annual average loan limit
or using loan values rounded to the nearest $1,000. Note that we utilize county-by-year specific conforming
loan limits from the FHFA, and our data on the mortgage loan amount at origination from CoreLogic are
not rounded, therefore alleviating these concerns. Second, there is a potential concern that since conforming
loan limits are based on average housing prices within a county, the loan limit could be endogenous to the
underlying SLR risk. Note that in our sample from 2001 to 2007, this would not be a concern since the FHFA
sets uniform limits across our data sample during this time period. In addition, our rich set of fixed effects
will compare the leverage behavior of similar houses within the same zip code, which should control for this
concern. A final concern is that conformity is defined by the origination loan amount relative to the loan limit
at the year of acquisition by the GSE, not the limit in the year of the mortgage origination, which we observe
in our data. As additional robustness, we re-estimate our conforming loan results using only years 2009 to
2016, when the conforming loan limits remained unchanged for nearly all counties in the U.S., and therefore
should be immune to measurement concerns regarding origination versus acquisition year. Table A12 presents
the results. Our leverage results remain robust. Our long maturity results on the interaction term remain
robust in magnitude although lose significant under the reduced sample size.
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which provide digitized maps for flood risk zones across the U.S. The NFIP defines high flood
risk as a probability of >1 in 100 of inundation by flooding in a given year. Thus, we define
a variable FEMA zone that is equal to one if a property is in a high risk flood zone (A- or
V-type zone in FEMA’s classification of SFHAs) and zero otherwise.

In Table A8, we include this FEMA zone dummy as an additional variable in our main
regressions and also interact it with our climate beliefs variable. Our main results remain
robust in sign, magnitude, and significance. Furthermore, the coefficient of the FEMA zone
dummy is negative and significant in the leveraged regression, which is consistent with the fact
that lending regulations increase the cost of leverage in the flood zone (e.g., the requirement
that the homebuyer purchases flood insurance if they want to use a federally-backed mortgage
or mortgage issued by a federally-regulated lender, Blickle and Santos 2022). Interestingly,
the interaction between climate beliefs and FEMA flood zone does not significantly impact
the leverage decision. This further reassures us that our results are being driven by beliefs
over future SLR and not by current flood risk or insurance requirement.

6.4 Additional exercises

Appendix B.2 provides five additional robustness checks (alternative SLR risk measurement,
alternative fixed effects, owner occupied vs. non-owner occupied transactions, excluding bad
controls, results over time) and an additional analysis of other intensive margins of leverage.

7 Potential implications to financial stability

Having provided robust evidence of the model’s implications, we now discuss potential policy
implications. The U.S. mortgage debt market is dominated by the prevalence of long-term
fixed-rate 30-year mortgages,45 making its financial system exposed to long-run risks. We
can analytically analyze the effects of potential policy reforms on the stability of the financial
system to long-run SLR and climate-related disaster risks through the lens of our model.

7.1 Aggregate measure of financial risk

To do so, we first generalize the baseline model to have multiple types of borrowers’ beliefs (λ)
and houses’ exposure to the disaster (d). There is a unit measure of atomistic homebuyers.
At t = 0, each homebuyer is exogenously matched with a house. Homebuyers have different
beliefs about the arrival rate of the disaster. Each house’s disaster exposure parameter d and
the matched homebuyer’s belief parameter λ are distributed according to a joint probability
distribution function ϕ. As before, there are competitive lenders with a common belief pa-
rameter λ̄.46 Homebuyers search for lenders through competitive search and matching, and
markets clear in equilibrium (see details in Appendix A.2.8).

45For example, more than 70% of GSE-backed mortgages (Section 7.5) have a maturity of at least 30 years.
46The assumption that lenders have the same belief is without loss of generality: if lenders were to have

different beliefs in [λ̄, ¯̄λ], then only the lenders with the most optimistic belief λ̄ will lend in equilibrium.
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The general model has a direct measure of how climate disasters can affect financial
stability—the measure of risky mortgages that will be defaulted when the disaster hits:

Arisky
T ≡

∫
λ > λ∗, d > λ̄f︸ ︷︷ ︸
risky mortgage domain

equilibrium density︷ ︸︸ ︷
ϕ∗
T (λ, d) , (24)

where the belief cutoff threshold λ∗ = λ∗(d) is given by (12), and the joint density of mortgages
in equilibrium ϕ∗ is derived from the exogenous joint density ϕ of homebuyer and house types,
equilibrium leverage probability α∗ and maturity rate µ∗:

ϕ∗
T (λ, d) ≡

measure of outstanding mortgages at T︷ ︸︸ ︷
e−rµ∗(λ,d)T

loan approval probability︷ ︸︸ ︷
α∗(λ, d) ϕ(λ, d). (25)

Hence, Arisky
T is the count of all risky mortgages that are outstanding (have not matured) at

the disaster date T . This number has a direct welfare meaning: the aggregate dead weight
loss due to default at the disaster date is Arisky

T f . Hence, through the lens of the model, we
view Arisky

T as an aggregate measure of mortgages at risk in the financial market.

7.2 Phasing out GSEs’ guarantee subsidy

The macrofinance literature has argued that subsidized GSEs’ guarantees lead to riskier mort-
gage originations (and a higher incidence of default and ultimately a higher fragility of the
financial system (Jeske et al. 2013; Elenev et al. 2016)). Our analysis adds a novel time dimen-
sion to this discussion: subsidized guarantee fees especially lead to riskier long-term mortgage
origination, thus making the mortgage market more exposed to long-run risks.

Hence, a policy implication of our model is that phasing out the guarantee subsidy in at-risk
areas would lower the mortgage market’s exposure to long-run (SLR) risks.47

To see this, recall the GSE extension in Section 4.3: a smaller guarantee fee g translates
to more optimism in lenders’ evaluation of a risky loan, especially one with a longer maturity.
Hence an increase in g, representing a phasing out of the guarantee subsidy, translates to less
lender optimism—especially in evaluating long-term risky loans. The effect of g on Arisky

T can
be decomposed in to several components:

∂

∂g
Arisky

T = −
∫
d>λ̄f

∂λ∗

∂g︸︷︷︸
>0

ϕ∗(λ∗, d)

︸ ︷︷ ︸
aggregate extensive margin, <0

+

∫
λ>λ∗,
d>λ̄f

e−rµ∗T ∂

∂g
α∗︸ ︷︷ ︸

<0︸ ︷︷ ︸
individual extensive margin, <0

+

∫
λ>λ∗,
d>λ̄f

ϕ∗(λ, d)

(
−rT

∂

∂g
µ∗

)
︸ ︷︷ ︸

<0︸ ︷︷ ︸
intensive margin, <0

.

(26)
The terms capture the fact that an increase in g reduces (i) the domain of risky borrowers by

47For example, Gete et al. (2024) estimate that currently the g-fees in counties with the highest hurricane
risks are about 40% below the market-implied g-fees (i.e., what the fees should be if the default risk was priced
by the market). GSEs’ guarantee fees generally tend to be rigid and do not reflect relevant spatial variations,
including predictable regional variations in default risks, leading to an implicit cross subsidization from less
at-risk areas to more at-risk areas (Hurst et al. 2016; Gete et al. 2024).
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raising the belief threshold λ∗ for risky borrowers in equilibrium, (ii) the equilibrium probability
α∗ that a risky mortgage is approved, and (iii) the equilibrium mortgage maturity and hence
the measure of risky mortgages that have not matured by the disaster period T . All of the
components are negative, reinforcing an ultimate reduction in the volatility of the mortgage
market due to the disaster shock. The effects of an increase in the skin-in-the-game parameter
θ on Arisky are similar to those of an increase in g.

Remark 6 (MBS). The GSEs’ guarantee plays a crucial role in pricing agency MBSs (mortgage-
backed securities guaranteed by the GSEs). As witnessed in the Great Recession, the agency
MBS has long been an important market for financial stability. The GSEs’ guarantee effectively
transforms the default risk to a prepayment risk to MBS investors (Weiner, 2016). Intuitively,
when a mortgage is defaulted, the GSEs make a lump-sum guarantee payment of the unpaid
balances to MBS investors, like a prepayment of the loan. Appendix A.2.9 formalizes the
relationship between the GSEs’ guarantee and the volatility in the MBS price, and shows that
the disaster causes a drop in the MBS price. Our policy discussion above applies: a phasing
out of the GSE subsidy will reduce the prepayment risk in the MBSs.

Remark 7 (News shocks). While we have focused on the ramifications of the disaster shock, the
analysis in this section can also be applied to study the ramifications of a news shock about
the disaster process.48 Recall the extension in Section 4.8. There, a bad news shock that
make agents more pessimistic can trigger equilibrium defaults. Similarly, an unanticipated
news shock that increases the dispersion of beliefs, which make some agents more pessimistic,
will also trigger equilibrium defaults by the borrowers who become more pessimistic about the
value of the underlying collateral. Thus, our model can connect to a major policy concern
that with the potential for sudden shifts in the perceptions of risk, slow-moving hazards like
SLR can still pose risks to mortgages, MBSs, and ultimately increases the fragility of the
financial system (Brunetti et al., 2021). Our policy discussion above applies: an increase in g

will reduce the aggregate number of defaults due to a bad news shock.

Remark 8 (Phasing out maturity subsidies). Through the GSEs and other government agen-
cies, the U.S. government has a long history of policies that aims to make homeownership more
affordable by subsidizing long-term mortgage lending, which spreads out the cost of paying
for a house over time.49 So far we have treated g as a parameter, but we can also think of
g is an increasing function of µ (a lower guarantee fee for a long-term mortgage with a lower

48An example is the release of more pessimistic SLR forecasts that led to increased capitalization of SLR
risk in financial markets (Goldsmith-Pinkham et al., 2023) since 2013.

49For example, the National Housing Act of 1934 established the Federal Housing Administration (FHA),
which guaranteed long-term fixed-rate mortgages with low down payment. In 1938, to further encouraging
mortgage lending, the government chartered the Federal National Mortgage Association, or Fannie Mae, a GSE
that purchased FHA-guaranteed loans and kept them on its own balance sheet. In 1970, to further improve the
liquidity of the mortgage market, the U.S. Congress established another GSE, the Federal Home Loan Mortgage
Corporation, or Freddie Mac, which bought mortgages from lenders on the secondary market, pooled them,
and sold them as mortgage-backed securities (MBS) on the open market. Since then, the GSEs have been the
key players in major developments of the U.S. mortgage and MBS markets, and their presence are essential for
the prevalence of long-term fixed-rate mortgages. In the aftermath of the 2008 housing crisis, these GSEs have
been placed under government conservatorship, whereby the federal government retains operational control
and effective ownership. See, e.g., Wells (2023) for further historical context.

39



maturity rate µ), due to the presence of such policies. We can similarly show that a phasing
out of GSEs’ support for long-term mortgages (a decline in the slope of g with respect to µ)
reduces the mortgage market’s exposure to long-run risks.

7.3 Insurance mandate

Our model also implies that an insurance mandate reduces the mortgage market’s SLR risk
exposure. Recall the insurance extension in Section 4.1. There, without a mandate, the
risky leverage option reduces the voluntary demand for insurance and hence exacerbates the
underinsurance problem. With a mandate, the insurance program reduces the disaster damage,
and hence reduces the measure of risky mortgages (because ∂Arisky/∂d < 0).

In practice, as noted in Section 6.3, flood insurance is mandatory for borrowers if their loans
are backed by the GSEs and their properties lie in Special Flood Hazard Areas on official FEMA
floodplain maps. However, official FEMA floodplain maps tend to underestimate current and
future flood risks (Sastry 2021).50 Hence, a corollary of the implication above is that an
improvement of the official floodplain maps will help reduce the mortgage market’s exposure
to flood risks. In practice, an example of such improvement include Risk Rating 2.0, a 2021
FEMA initiative to reform the NFIP with the modernization of outdated maps with more
detailed property-specific assessment of flood risks that account for climate change.51

Similarly, the model implies that an increase in the insurance coverage cap (currently set
by the NFIP at $250,000) reduces the risky mortgage measure, as ∂Arisky/∂c < 0. Conversely,
the withdrawal of coverage by private insurers, as documented by Sastry et al. (2023), will
exacerbate the mortgage market’s risk exposure.

7.4 Disaster forbearance

Homeowners with GSE-backed mortgages are eligible for a temporary loan forbearance after a
natural disaster, and recall from the positive analysis in Section 4.2 that this forbearance pro-
vides an additional motive for pessimistic homeowners to leverage. Hence, another implication
is that an expansion of the forbearance (↑ ε) increases the measure of risky mortgages:

∂Arisky
T

∂ε
=

∫
λ>λ∗,
d>λ̄f

e−rµ∗T ∂

∂ε
α∗︸ ︷︷ ︸

>0︸ ︷︷ ︸
extensive margin, >0

+

∫
λ>λ∗,
d>λ̄f

ϕ∗(λ, d)

(
−rT

∂

∂ε
µ∗

)
︸ ︷︷ ︸

>0︸ ︷︷ ︸
intensive margin, >0

.

The following table summarizes our discussion in from Section 7.2 to Section 7.4:
50For example, 20% of properties that are projected to be inundated with 6ft of SLR in our sample lies

outside of official FEMA floodplains. First Street Foundation finds almost 70% more properties are at high
flood risk (1 in 100 annual probability) relative to FEMA’s official estimates (First Street Foundation, 2020).

51However, such reforms have proven to be politically difficult in practice. For example, in 2023, several
states filed a lawsuit against FEMA for implementing Risk Rating 2.0 (also known as Equity in Action). Among
other things, the lawsuit challenged the reform for “the inappropriate factor of future climate change, which
does not relate to the risk a property actually faces today” and alleged that “FEMA acted pretextually because
it imposed Equity in Action to further the Administration’s climate-change agenda” (Louisiana v. Mayorkas,
2023). Hurst et al. (2016) has documented a similar political difficulty in reforming GSE pricing policies.
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Phasing out GSE Expanding insurance mandate Expanding disaster
guarantee subsidy (↑ g or ↑ θ) or expanding coverage (↑ c) forbearance (↑ ε)

Arisky ↓ Arisky ↓ Arisky ↑

Table 7: Summary of model’s policy implications on financial stability.

Remark 9 (Time inconsistency problem). The fact that the measure of risky mortgages is in-
creasing in the disaster forbearance parameter implies an interesting time-inconsistency prob-
lem in disaster forbearance policies, similar to the well-known time-inconsistency problem in
bailout policies (Chari and Kehoe 2016; Keister 2016). Suppose the government cannot com-
mit to limiting future forbearance, which is aimed at reducing the bankruptcy costs in the
aftermath of the disaster. Anticipating a more generous forbearance due to the government’s
lack of commitment, borrowers find it optimal to increase their exposure to the disaster via
(safe and risky) leverage. Hence, the lack of commitment leads to more risky debt and even-
tually more costly defaults in equilibrium. (Appendix A.2.10 provides a parsimonious model
to illustrate this point further.)

7.5 Further empirical investigation of aggregate financial risk

To get a sense of the overall magnitude of mortgages at risk (Arisky) in the U.S. economy, we
examine the exposure of the portfolio of GSE-backed mortgages to future flood risks (both
coastal and inland, taking into account climate change).52 In particular, we analyze a compre-
hensive database of more than 100 million fully amortizing single-family fixed-rate mortgages
that Fannie Mae and Freddie Mac backed (purchased or guaranteed) between 1999 and 2023
across the whole U.S. The database provides the history of each loan’s performance over time,
including the timing of missed payments and default. We combine this GSE balance sheet
data with a comprehensive database of projected flood risks for 145 million properties across
the whole U.S., provided by the First Street Foundation (FSF). The FSF data provides a
risk score, the Flood Factor, that estimates each property’s risk of flooding (both coastal
and inland), cumulative between 2020 and 2050, assuming moderate Shared Socioeconomic
Pathways 2-4.5 for climate change (see Appendix B.4 for details).

While comprehensive, a drawback of the GSE data is that, due to confidentiality, the GSEs
do not provide the exact address of each mortgage, but only the 3-digit ZIP containing the
underlying property. Hence, we could only assign a coarse estimate of each loan’s flood risk:
we match the loan to the average flood factor of properties that lie in the same ZIP.53

Restricting attention to mortgages that are outstanding in the latest year of available data
52Our estimates of the total number of at-risk mortgages should be viewed as a lower-bound for Arisky,

as our GSE dataset does cover non-GSE-backed mortgages. For comparison, in the third quarter of 2023,
outstanding mortgage debt owed by U.S. households was $12.9 trillion; GSE MBS accounted for 65.1% ($9
trillion) of that outstanding debt (Urban Institute, 2023). However, to the extent that risky loans are sold to
the GSEs at higher rates relative to safe loans, then our estimates of the fraction of mortgages that are at risk
in Table 8 should be an upper bound for the overall fraction of at-risk mortgages in the U.S. economy.

53We acknowledge that this may lead to a biased estimate of a loan’s risk. Specifically, to the extent that
there is adverse selection into the GSE loan sample (i.e., all else equal, mortgages with higher flood risks are
more likely to be sold to the GSEs), then our proxy is likely an underestimate of the loan’s actual flood risk.
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(2023), Table 8 summarizes the exposure of the GSEs to future flood risk. The table shows
that according to our calculation, more than a quarter of outstanding mortgages (or more
than 23 million loans, with a total outstanding balance of more than $2 trillion dollars in our
sample) are at risk of future flooding, defined in this subsection as lying in a ZIP code with
an average Flood Factor of at least 2. A smaller fraction of more than 5% are at higher risk,
defined as lying in a ZIP code with an average Flood Factor of at least 3.54,55

Total sample % at risk % at higher risk

Number of outstanding loans 89.58m 26% (23.34m) 5.7% (5.10m)
Total outstanding balances $8.17tr 27% ($2.22tr) 5% ($0.41tr)

Table 8: Summary statistics of GSE exposure to future flood risk. Sample: outstanding (as
of Jan 2023) single-family fixed-rate mortgages that Fannie Mae and Freddie Mac purchased
or guaranteed since 1999. A loan is classified as at risk (at higher risk) if it lies in a 3-digit
ZIP that has an average Flood Factor of at least 2 (at least 3).

A key mechanism in our model is the ability of borrowers to default on their mortgages
following a disaster. We examine this mechanism by conducting an event study to investigate
default frequencies before and after a large hurricane. We focus on the sample of more than half
a million GSE loans in coastal Florida 1.5 years before and 1.5 years after Irma, a Category 4
hurricane that made landfall in the state on September 10, 2017 (see Appendix B.4 for details).
Our difference-in-differences regression of the default dummy includes a stringent set of loan
fixed effects and time fixed effects. The regression reveals that Hurricane Irma significantly
increased the default frequency in affected ZIP codes by more than 40 basis points (bps)
(standard error: 3 bps) in the subsequent six quarters. In comparison, the baseline cumulative
default frequency in the preceding 6 quarters was 80 bps. Figure A3 plots the observed means
and linear trends of the default frequencies among the loans in ZIP codes affected by Irma
(the treatment group) and those in unaffected ZIP codes (the control group).

Our estimate of 40 bps for Hurricane Irma in Florida is comparable to an independent
estimate in Du et al. (2020) of 10 bps for Hurricane Harvey in Texas and 86 bps for Hurricane
Maria in Puerto Rico. Using a larger sample of disasters that caused at least a billion dollars in
direct damage according to NOAA estimates, Ouazad and Kahn (2022) (Figure Ca) estimated
that on average such a disaster increased the foreclosure frequency in affected ZIP codes
by about 150 bps. Together, these estimates provide evidence that climate-related disasters
led to a significant increase (both statistically and economically) in the default frequency of
mortgages in affected areas. However, these estimates rely on relatively coarse definitions of
disaster (at the ZIP code level), and may underestimate the effects of the disaster damage.56

54According to our own calculation using FSF’s property-level projections, the average probability of having
at least one flood in the next 30 years is more than 18% among the at-risk sample (properties with Flood Factor
≥ 2), and more than 32% among the at-higher-risk sample (properties with Flood Factor ≥ 3).

55Our estimates are similar to a recent report by DeltaTerra Capital that found 13.3% of 32 million GSE-
backed loans analyzed were at high risk for flooding (Burt 2021).

56For example, Kousky et al. (2020) studied the performance of a smaller sample of loans, for which there
is property-level information of flood damage from Hurricane Harvey. They found that, compared with similar
properties having no damage, moderate to severe flood damage increases the frequency of mortgage default or
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8 Conclusion

What makes climate-related disaster risks special? There are several outstanding character-
istics: (i) they could have potentially large damages to collateralized capital, (ii) the risks
are back-loaded (most damages will occur in the future, and there is limited insurance today
against such long-run damages), and (iii) there is substantial belief disagreement over climate
risks, especially in the U.S. Our paper theoretically and empirically examines the case of flood
risks due to SLR, arguing that the combination of these features is key in understanding the
effects of SLR risks on the financial market. We find that despite paying less for an at-risk
property, climate pessimists are more likely to take out a mortgage and for a longer maturity
relative to climate optimists.

We believe that the exploration of the implications of climate risks for debt markets is an
exciting area for future research, both theoretically and empirically. For instance, our analysis
implies that adaptation strategies in financial markets, which are known to be subject to
agency problems, may have nontrivial implications (for the distribution of climate risks across
the financial system and broader financial stability) due to the strategic transfers of climate
risks. We have only scratched the surface of analyzing whether this could lead to concentration
of climate risks among a small set of systemically important financial institutions and whether
it could affect financial stability or general welfare. Future work could explore additional
prudential policies vis-a-vis the strategic transferring of climate risks we documented. For
example, it could be interesting to introduce belief heterogeneity into a quantitative macro
model with climate risk (e.g., à la Panjwani 2022) and study time-consistent prudential policies
(e.g., à la Bianchi and Mendoza 2018). Moreover, future research on the potential effects of
climate change on financial stability (such as climate stress testing exercises à la Acharya et al.
2023) should take the strategic transferring of climate-related risks into account.

Future work could also explore the roles of several important margins not considered in this
paper. For instance, one could extend our theoretical model to allow agents to resell the house,
and expand our empirical analysis to study whether climate risks and climate beliefs affect
how resalable a property is. One could extend our framework to study potential interactions
between mortgage choice and residential sorting (à la Bakkensen and Ma 2020; Bakkensen and
Barrage 2022). Finally, one could examine the financial implications of belief disagreement
about transition risks, including the disagreement over the paths of future climate policies
(e.g., carbon taxes, emission regulations, climate treaties). These are some open questions
that will remain pertinent for decades to come.
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A Online Appendix: Theory

(a) Equilibrium leverage probability. (b) Equilibrium maturity rate (note: lower maturity
rate µ∗ implies a mortgage with a longer maturity).

Figure A1: Equilibrium leverage probability α∗ and maturity rate µ∗ (assuming the house is
sufficiently exposed that d > λ̄f).

A.1 Omitted proofs

A.1.1 Proof of Lemma 1

Since there are only two events, namely disaster and loan maturity, the optimal default time
is contingent on the timing of the disaster and loan maturity and takes the following form:

τ∗ =


τ0 before the disaster and loan maturity

T + τd after the disaster but before loan maturity

∞ after loan maturity

,

where τ0 and τd are constants to be determined.
Solving the buyer’s default decision backward, consider the subgame after the disaster has

happened at t = T but before the loan matures. Denote tµ = Tµ − T as the distance to the
maturity date, where tµ follows the exponential distribution with parameter rµ. The buyer’s
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continuation value at t = T from the strategy of defaulting at T + τd is given by:

W (τd) ≡
∫

rµe−rµtµ


∫ tµ∧τd
0 re−rt (h− d− b) dt

+e−rτd1τd≤tµ

[
−f + {h− d−B}+

]
+e−rtµ1τd>tµ (h− d)

dtµ,

where we have made use of the fact that the housing price after the disaster is given by its fun-
damental value (h−d)/r. The value function satisfies the following Hamilton–Jacobi–Bellman
(HJB) equation:

d

dτ
W (τ) = r (h− d− b) + rµ [h− d−W (τ)]− rW (τ) . (27)

The HJB states that the marginal value of postponing default (the left-hand side) is equal to
the sum of the flow of asset return (post-disaster) net of the loan repayment, r (h− d− b), and
the expected gain of paying off the loan, rµ [h− d−W (τ)], minus the cost of discounting,
rW (τ). The case τ = 0 represents that the buyer defaults immediately, which gives the
following boundary condition to (27):

W (0) = −f + {h− d−B}+ .

Using the boundary condition, the HJB equation has the following solution:

W (τ) =
[
1− e−r(1+µ)τ

]
(h− d−B) + e−r(1+µ)τ

[
−f + {h− d−B}+

]
. (28)

The first term is the present value of never default, and the second term is the value of imme-
diate default. Thus, W (τ) is the average weighing the latter by the factor exp [−r (1 + µ) τ ].
The optimal stopping time to default is τd = ∞ if the first term is weakly larger and τd = 0 if
the second term is strictly larger, imposing (without loss of generality) a tie-breaking rule that
a borrower chooses to repay when they are indifferent. The first term is a downward-sloping
curve in B; the second term is a downward-sloping curve in B with the same slope for all
B < h − d but then flat at −f for all B ≥ h − d. Thus, the first term cuts the second term
from above in the flat region of the second term at the single crossing point B = Bsafe, where:

Bsafe = h− d+ f . (29)

The optimal stopping time of default thus follows the bang-bang rule:

τd ≡ argmax
τ

W (τ) =

∞ if B ≤ Bsafe

0 if B > Bsafe
,
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and the continuation value under this optimal default strategy is:

W ∗ (B) ≡ W (τd) =

h− d−B if B ≤ Bsafe

−f if B > Bsafe
. (30)

Now, consider the subgame at t = 0 before the disaster and loan maturity. Recall that the
maturity date arrives at rate rµ while, according to the borrower’s belief, the disaster date
arrives at rate rλ. At t = 0, the buyer’s continuation value of defaulting at τ0, where τ0 ≤ T ,
is given by:

V0 (τ0) ≡
∫

rλe−rλT

∫
rµe−rµTµ



∫ min(Tµ,τ0,T )
0 re−rt (h− b) dt

+e−rT 1T≤min(Tµ,τ0)W
∗ (BT )

+e−rτ01τ0≤Tµ,τ0<T

[
−f +

{
rp−Bτ0

}
+

]
+e−rT 1Tµ<τ0,Tµ<T vλ

 dTµdT (31)

The value function satisfies the following HJB equation:

d

dτ
V0 (τ) = r (h− b) + rµ [vλ − V0(τ)]− rλ [V0(τ)−W ∗ (B)]− rV0(τ). (32)

The HJB states that the marginal value of postponing default is equal to the sum of the flow
of asset return (pre-disaster) net of the loan repayment, r (h− b), and the expected gain of
paying off the loan, rµ [vλ − V0 (τ)], minus the expected loss from the exposure to the disaster,
rλ [V0 (τ)−W ∗ (B)], and the cost of discounting, rV0 (τ). At τ = 0, the borrower defaults
immediately, which gives the boundary condition to (32):

V0 (0) = −f +
{
rp−B

}
+
.

Using the boundary condition, the HJB equation has the following solution:

V0 (τ) =
[
1− e−r(1+λ+µ)τ

] h− (1 + µ)B + λW ∗ (B) + µvλ
1 + λ+ µ︸ ︷︷ ︸

V1(B)

+ e−r(1+λ+µ)τ
[
−f +

{
rp−B

}
+

]
︸ ︷︷ ︸

V2(B)

.(33)

The first term is the present value of never default before the disaster, and the second term
is the value of immediate default. Define the first term as V1 (B) and the second term as
V2 (B). Thus, we have τ0 = 0 if V1 (B) < V2 (B) and τ0 = ∞ if V1 (B) ≥ V2 (B), imposing a
tie-breaking rule that a borrower chooses to never default when he is indifferent. We want to
solve the region of B such that V1 (B) < V2 (B).

Using W ∗ (B) from (30), V1 (B) is given by:

V1 (B) =

vλ −B if B ≤ Bsafe

h−λf+µvλ
1+λ+µ − 1+µ

1+λ+µB if B > Bsafe
.

V1 (B) features the values for two default strategies: in the first region B ≤ Bsafe, the buyer
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never defaults; in the second region B > Bsafe, the buyer defaults immediately after the disaster
(which is also optimal in that subgame, shown above) but does not default beforehand. Thus,
V1 (B) is decreasing in B with slope equal to −1 in the first region and with slope equal to
− 1+µ

1+1+λ+µ ∈ (−1, 0) in the second region.
On the other hand, V2 (B) is decreasing in B, with the slope equal to −1 when B ≤ rp;

otherwise the slope equals 0. Also, notice that we have V1 (0) = vλ > rp − f = V2 (0).
Thus, we must have V2 (B) intersecting V1 (B) from below at the flat region of V2 (B)—see
the illustration in Figure A2. Denote the intersection as B = Brisky, i.e., V1

(
Brisky) =

V2

(
Brisky) = −f , where V1 (b) > V2 (b) if B < Brisky and vice versa. Notice that since

V1

(
Bsafe) = vλ− (h− d+ f) > −f = V1

(
Brisky), we must have Brisky > Bsafe. In sum, Brisky

is given by setting the second region of V1

(
Brisky) to −f :

Brisky = h− µ

1 + µ

λ

1 + λ
d+ f. (34)

B

V

Bsafe rp Brisky

vλ

rp− f

d
1+λ − f

−f

V1(B)

V2(B)

Figure A2: Illustration of value functions V1(B) and V2(B) from equation (33) and the deter-
mination of the risky debt limit Brisky in (34). Note that Bsafe can be on the left-hand side
or right-hand side of rp without affecting Brisky.

Summarizing the above cases, the optimal default time is as stated in Lemma 1.

53



A.1.2 Proof of Proposition 2

Equations (8) and (9) an be rewritten as:

Vλ(m)− vλ =


−B if B ≤ Bsafe

−B − λ
1+µ+λ(h− d+ f −B) if B ∈ (Bsafe, Brisky]

−vλ − f otherwise

Rλ̄(m) =


B if B ≤ Bsafe

B + λ̄
1+µ+λ̄

(h− d−B) if B ∈ (Bsafe, Brisky]

rp otherwise

.

Hence, the joint surplus S(m) = Vλ(m)− vλ +Rλ̄(m) from any mortgage contract m can
be written as:

S(m) =


0 if B ≤ Bsafe(

1+µ
1+λ̄+µ

− 1+µ
1+λ+µ

)
(B −Bsafe)− λ̄

1+λ̄+µ
f if B ∈ (Bsafe, Brisky]

rp− (vλ + f) < 0 otherwise

.

It is immediate that choosing a mortgage contract with the loan balance exceeding the
risky limit (B > Brisky) will never occur in equilibrium, since it will yield a negative surplus
of rp− (vλ + f) < 0. Hence, it suffices to focus on contracts with B ≤ Brisky.

For a risky mortgage (B ∈ (Bsafe, Brisky]), given the linearity of the joint surplus, it is
immediate that the surplus is maximized by choosing B = Brisky if λ > λ̄, and by choosing
B = Bsafe otherwise. Furthermore, when λ > λ̄, the surplus from choosing B = Brisky can be
simplified further as:(

1 + µ

1 + λ̄+ µ
− 1 + µ

1 + λ+ µ

)
(Brisky −Bsafe)− λ̄

1 + λ̄+ µ
f =

∆

1 + µ+ λ̄
,

which is positive if and only if ∆ > 0, which is the case if and only if λ > λ∗ and d > λ̄f .
Hence, if λ ≤ λ∗ or d ≤ λ̄f , then it is never optimal to choose a risky mortgage contract.

In this case, maximal joint surplus is achieved by choosing a safe mortgage contract. However,
a safe contract only yields a joint surplus of zero. Given the presence of the maintenance cost
κ(µ) and the fixed cost of entry κ0, borrowing with any mortgage contract is never optimal in
this case.

However, if λ > λ∗ and d > λ̄f , then it is optimal to choose a risky mortgage with the
risky debt limit binding B = Brisky. The equilibrium contract will have a per-period payment
of b∗ = (1 + µ)Brisky, a maturity rate µ∗ that maximizes:

max
µ≥0

∆

1 + µ+ λ̄
− κ(µ),
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and a leverage probability α∗ that maximizes:

max
α∈[0,1]

α ·
{

∆

1 + µ∗ + λ̄
− κ(µ∗)− κ0

η(α)

}
,

with a loan amount given by lenders’ free-entry condition (6):

rl∗ =
1 + µ

1 + µ+ λ̄
Brisky +

λ̄

1 + µ+ λ̄
(h− d)− κ0

η(α∗)
− κ(µ∗).

A.1.3 Proof of Corollary 3

The comparative statics of µ∗ and α∗ are straightforward following the application of monotone
comparative statics to their definition in Proposition 2.

For the comparative statics of the loan amount l∗, notice that the free-entry (6) condition
implies that:

rl∗ =
1 + µ∗

1 + µ∗ + λ̄
B +

λ̄

1 + µ∗ + λ̄
(h− d)− κ (µ∗)− κ0

η (α∗)
. (35)

For λ > λ∗, we have ∂µ∗/∂λ < 0. So, via µ, an increase in λ additionally increases the first
two terms of (35), but decreases the third term. The overall sign of ∂l∗/dλ becomes ambiguous
for λ > λ∗. The same is true for ∂l∗/∂d for λ > λ∗.

Finally, since the loan rate r∗ is defined as:

r∗ ≡ Rλ̄ (m
∗)

l∗
= r +

κ (µ∗) + κ0
η(α∗)

l∗
, (36)

which depends on l∗, so the overall signs of ∂r∗/∂λ and ∂r∗/∂d are ambiguous for λ > λ∗.

A.2 Model extensions: Details

A.2.1 Disaster insurance

Proof of Lemma 4 We solve the equilibrium default strategy assuming that the borrower
buys the insurance. Of course, if the borrower defaults, they will stop buying insurance for
his asset. Consider the subgame after the disaster has happened but the debt contract has
not matured yet. Let i ∈ {0, 1} denote the borrower’s insurance uptake. Let τ denote their
default period. Given insurance coverage c, the borrower’s HJB equation is:

Wi (τ) =
[
1− e−r(1+µ)τ

]
(h− d+ ic−B) + e−r(1+µ)τ {h− d+ ic−B}+ .

The optimal stopping time of default τ∗i is given by

W ∗
i (B) ≡ Wi (τ

∗
i ) =

h− d+ ic−B if B ≤

h−d︷ ︸︸ ︷
Bsafe +ic

0 if B > Bsafe + ic

.
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Now, consider the subgame before the disaster and before the loan matures. The HJB
equation has the following solution:

V (τ) =
[
1− e−r(1+λ+µ)τ

]
max
i∈{0,1}

h− iλIc− (1 + µ)B + λW ∗
i (B) + µvins

λ

1 + λ+ µ︸ ︷︷ ︸
V1(B)

+e−r(1+λ+µ)τ
{
rp−B

}
+︸ ︷︷ ︸

V2(B)

.

Thus, the borrower will buy insurance (i = 1) if and only if the cost is smaller than the benefit:

λIc

λ
< W ∗

1 (B)−W ∗
0 (B) =


c, if B ≤ Bsafe

h− d+ c−B, if B ∈ (Bsafe, Bsafe + c]

0, if B > Bsafe + c

Rearranging the above terms, we have:

i = 1 ⇔ λIc

λ
< W ∗

1 (B)−W ∗
0 (B) ⇔ B < Bsafe

ins ≡ Bsafe +

(
1− λI

λ

)
c.

Following the similar logic in the previous proof, we can summarize the borrower’s value in
the following regions:

Vλ (a) =


vins
λ −B, if B ≤ Bsafe

ins
1+µ

1+λ+µ

(
Brisky

ins −B
)

, if B ∈ (Bsafe
ins , Brisky

ins ]

0, if B > Brisky
ins

where

Brisky
ins ≡ h− µ

1 + µ

λ

1 + λ

[
d−

(
1− λI

λ

)
c

]
.

In the first region, the borrower buys the insurance and never defaults. In the second region,
the borrower defaults when the disaster hits and buys the insurance only after the loan has
matured (and not defaulted). In the last region, the borrower defaults immediately (and does
not buy insurance, of course).

Equilibrium characterization Assume λI ≤ λ̄ and f = 0. Using the same steps as in
Section A.1.2, we can characterize the equilibrium mortgage and insurance uptake as follows.
There is a belief cutoff threshold:

λ∗
ins ≡ λ̄+

λ̄− λI

1
1+λ̄

d
x − 1

≥ λ̄ ≥ λI ,

such that:

1. A sufficiently pessimistic homebuyer with λ > λ∗
ins at t = 0 chooses a risky mortgage

contract with a risky loan amount B = Brisky
ins ≥ Brisky. The buyer participates in the

insurance program only after the mortgage contract has matured (i.e., at all t ∈ [Tµ, T )).
As before, the equilibrium leverage probability α∗ increases and the loan maturity rate
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µ∗ solves:

max
α

α ·
{
max
µ

[
∆ins

1 + µ+ λ̄
− κ(µ)

]
− κ0

η(α)

}
,

where ∆ins = ∆− 1+λ̄
1+λ(λ− λI)x ≤ ∆. As before, α∗ increases and µ∗ decreases in λ.

2. A sufficiently optimistic homebuyer with λ ≤ λ∗
ins chooses not to borrow at t = 0. A

very optimistic homebuyer with λ ≤ λI will never purchase insurance. A moderately
optimistic homebuyer with λI < λ ≤ λ∗

ins purchases insurance at all t ∈ [0, T ).

In summary, our baseline results continue to hold, with the cutoff threshold λ∗, risky debt
limit Brisky, and belief disagreement term ∆ replaced by λ∗

ins, B
risky
ins , and ∆ins, respectively.

Moreover, since risky debt crowds out insurance uptake (Lemma 4), insurance uptake is a
nonmonotone function of the homebuyer’s belief. While a moderately optimistic buyer with
λI < λ ≤ λ∗

ins purchases insurance at all t ∈ [0, T ), a pessimistic buyer with λ > λ∗
ins instead

chooses to leverage with a risky mortgage and purchase insurance only after the mortgage has
matured, at t ∈ [Tµ, T ).57

A.2.2 Disaster forbearance

Anticipating the forbearance program, the joint surplus at t = 0 from a mortgage m becomes:

S(m) =



λ(1− e−rε)B

1 + µ+ λ︸ ︷︷ ︸
new

> 0 if B ≤ Bsafe

(
1 + µ

1 + µ+ λ̄
− 1 + µ

1 + µ+ λ

)
(B − h+ d− f)− λ̄

1 + µ+ λ̄
f︸ ︷︷ ︸

as before

+
λ (1− e−rε)

1 + µ+ λ
(h− d+ f)︸ ︷︷ ︸

new

if B ∈ (Bsafe, Brisky]

rp− (vλ + f)︸ ︷︷ ︸
as before

if B > Brisky

.

Whenever the first option is optimal, it is optimal to set B = Bsafe. The optimal maturity
µ∗safe(λ) and leverage probability α∗safe(λ) solve:

max
α∈[0,1]

α

{
max
µ≥0

[
δ

1 + µ+ λ
− κ(µ)

]
− κ0

η(α)

}
,

where

δ ≡ λ(1− e−rε)

Bsafe︷ ︸︸ ︷
(h− d+ f) .

57Recall that both Tµ and T are random variables. If the disaster realizes before the mortgage matures
(T ≤ Tµ), then the borrower will default at T and hence will never purchase insurance.
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The surplus from an optimal safe contract is given by:

Ssafe(λ) ≡ δ

1 + µ∗safe + λ
.

Whenever the second option is optimal, it is optimal to set B = Brisky. As before, the
optimal risky contract solves:

max
α∈[0,1]

α

{
max
µ≥0

[
∆

1 + µ+ λ̄
+

δ

1 + µ+ λ
− κ(µ)

]
− κ0

η(α)

}
,

where recall that ∆ ≡ λ−λ̄
1+λd− λ̄f , and the surplus from an optimal risky contract is given by:

Srisky (λ) ≡ ∆

1 + µ∗ + λ̄
+

δ

1 + µ∗ + λ
.

Note that Srisky (λ) > Ssafe(λ) iff ∆ > 0. Thus, we have Srisky(λ) > Ssafe(λ) if and only if
λ > λ∗. When λ ≤ λ∗, the borrower prefers the optimal safe debt. When λ > λ∗, they prefer
the optimal risky debt.

A.2.3 GSE guarantee

The lender’s expected profit from obtaining GSE guaurantee for a fraction 1−θ of its mortgage
cash flow is now:

Πλ̄(m) ≡ θRλ̄(m) + (1− θ) [B − gDλ̄(m)] , (37)

where Dλ̄(m) is the expected discounted deficiency amount, given by:

Dλ̄(m) =

{
0

λ̄
1+µ+λ̄

(B − h+ d)

if B ≤ Bsafe

if B ∈ (Bsafe, Brisky]
, (38)

where without loss of generality we rule out the excessively risky debt region B > Brisky by
assuming that the GSEs do not guarantee any loan in this region.

Focusing on the second region, the lender’s expected present value of the cash flow is thus:

θRλ̄(m) + (1− θ) [B − gDλ̄(m)] = B − λ̄ [θ + (1− θ) g]

1 + µ+ λ̄
(B − h+ d) .

Recall that the borrower’s surplus is:

Vλ(m)− vλ = −B +
λ

1 + µ+ λ
(B − h+ d+ f) .

Thus, the joint surplus is:

S (B) ≡ Vλ(m)−vλ+Πλ̄(m) =

(
λ

1 + µ+ λ
− [θ + (1− θ) g] λ̄

1 + µ+ λ̄

)
(B − h+ d+ f)− [θ + (1− θ) g] λ̄

1 + µ+ λ̄
f
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So, B > Bsafe is optimal if and only if:

λ

1 + µ+ λ
>

[θ + (1− θ) g] λ̄

1 + µ+ λ̄
. (39)

In this case, we have:

S
(
Brisky) = [θ + (1− θ) g] ∆T̄ +

(1− θ) (1− g)λd(
1/T̄ − λ̄

)
(1 + λ)

,

where recall that T̄ ≡ 1
1+µ+λ̄

. Note that S
(
Brisky) is increasing and convex in T̄ .

Thus, T̄ > 0 only if

0 <
∂S

(
Brisky)
∂T̄

∣∣∣∣∣
T̄=0

= [θ + (1− θ) g] ∆ +
(1− θ) (1− g)λd

1 + λ
(40)

⇔ λ > λ∗
GSE ≡ λ̄ [θ + (1− θ) g]

1 + f/d

1− λ̄ [θ + (1− θ) g] fd︸ ︷︷ ︸
>1

.

Note that (40) implies (39) for any µ ≥ 0 under the maintained assumption d > λ̄f . Hence,
the homebuyer will borrow iff λ > λ∗

GSE, and when they do, they will use a risky mortgage
with balance B = Brisky.

The definition of λ∗
GSE implies that λ∗

GSE ≤ λ∗, and the inequality is strict when (1− θ) (1− g) >

0. In words, the subsidized GSE guarantee leads to more risky borrowing in equilibrium.
Regarding comparative statics, from the formula of λ∗

GSE in (40), we have ∂λ∗
GSE/∂g > 0,

∂λ∗
GSE/∂θ > 0, and ∂λ∗

GSE/∂λ̄ > 0. Furthermore:

∂

∂g
S
(
Brisky) = (1− θ) T̄

[
∆− λd(

1− λ̄T̄
)
(1 + λ)

]
< 0,

∂

∂θ
S
(
Brisky) = (1− g) T̄

[
∆− λd(

1− λ̄T̄
)
(1 + λ)

]
< 0,

∂2

∂T̄∂g
S
(
Brisky) = (1− θ)

[
∆− λd(

1− λ̄T̄
)2

(1 + λ)

]
< 0,

∂2

∂T̄∂θ
S
(
Brisky) = (1− g)

[
∆− λd(

1− λ̄T̄
)2

(1 + λ)

]
< 0,

∂2

∂T̄∂λ̄
S
(
Brisky) = − [θ + (1− θ) g]

(
d

1 + λ
+ f

)
− 2 (1− θ) (1− g)λd(

1− λ̄T̄
)3

(1 + λ)
T̄ < 0.

Thus, we have ∂α∗/∂g < 0, ∂α∗/∂θ < 0, ∂T̄ /∂g < 0, ∂T̄ /∂θ < 0, and ∂T̄ /∂λ̄ < 0. Finally,
note that:

∂

∂λ̄
S
(
Brisky) = − [θ + (1− θ) g] T̄

(
d

1 + λ
+ f

)
+

(1− θ) (1− g)λd(
1/T̄ − λ̄

)2
(1 + λ)

,
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Since ∂2

∂T̄∂λ̄
S
(
Brisky) < 0, we have

∂

∂λ̄
S
(
Brisky) < ∂

∂λ̄
S
(
Brisky)∣∣∣∣

T̄=0

= 0.

Hence, we have ∂α∗/∂λ̄ < 0.

A.2.4 Endogenous housing price

Proof of Proposition 5 Recall that Mλ denotes the borrower’s expected value from the
optimal mortgage:

Mλ ≡ max
α∈[0,1]

α ·
{

∆

1 + µ∗ + λ̄
− κ(µ∗)− κ0

η(α)

}
.

The envelope theorem implies that

∂Mλ

∂λ
= −α

1 + λ̄

1 + µ+ λ̄

∂vλ
∂λ

,

Given the bargaining solution of the house price rp∗ = (1− ζ)vλ + ζvs + (1− ζ)Mλ, we have

r
∂p∗

∂λ
= (1− ζ)

[
∂vλ
∂λ

+ 1Mλ ̸=0
∂Mλ

∂λ

]
= (1− ζ)

1− 1Mλ ̸=0

<1︷ ︸︸ ︷
α

1 + λ̄

1 + µ+ λ̄


︸ ︷︷ ︸

>0

∂vλ
∂λ︸︷︷︸
<0

< 0.

Similarly,

r
∂p∗

∂d
= (1− θ)

1− 1Mλ ̸=0

<1︷ ︸︸ ︷
α
(
1− λ̄

λ

)
1 + µ+ λ̄


︸ ︷︷ ︸

>0

∂vλ
∂d︸︷︷︸
<0

< 0.

A.2.5 Difference in funding costs

With funding costs, the homebuyer’s optimization problem in (5) becomes:

Uλ ≡ max
m

α [−r(p− l) + Vλ(m)] + (1− α) (−rp+ vλ) , (41)

where Vλ(m) is the same as before. The lender’s expected profit in (4) becomes:

Πλ̄ (m) ≡ Rλ̄ (m)− r̄l − κ(µ). (42)
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where Rλ̄(m) is now given by

Rλ̄ (m) =


B if B ≤ Bsafe

b
1+µ+λ̄

+ λ̄
1+µ+λ̄

h−d
ω if B ∈ (Bsafe, Brisky]

r̄p otherwise

,

where ω ≡ r/r̄ > 1.
The joint surplus from a given mortgage m is given by:

S (m) = Vλ (m)− vλ + ωRλ̄ (m)

=



(ω − 1)B if B ≤ Bsafe

(1 + µ)
(

ω
1+µ+λ̄

− 1
1+µ+λ

) (
B −Bsafe)

+(ω − 1)Bsafe − λ̄
1+µ+λ̄

[
(ω − 1)Bsafe + f

] if B ∈ (Bsafe, Brisky]

rp− vλ − f otherwise

.

To avoid unrealistic mortgage contracts that mature immediately, we impose an upper bound
on the maturity rate: µ ∈ [0, µmax]. We set µmax sufficiently large so that the constraint µ ≤
µmax does not bind in equilibrium for risky mortgages. However, as shown below, an optimistic
borrower will use a safe mortgage contract with a short maturity where this constraint binds.
Using the same steps as in Section A.1.2, we can characterize the equilibrium mortgage as
follows: There is a belief cutoff threshold given by:

λ∗
ω ≡


λ̄(d+f)+∆2

d−λ̄f−∆1
if d > λ̄f +∆1

∞ otherwise
, (43)

where

∆1 ≡ λ̄
(
1− ω−1

)
(h− d) ,

∆2 ≡
(
1− ω−1

) [
λ̄h−

(
1 + µmax + 2λ̄

)
d
]
.

The equilibrium mortgage contract is now given by:

1. If the house is sufficiently exposed (d > λ̄f + ∆1) and the homebuyer is sufficiently
pessimistic with λ > λ∗

ω, then:

(a) chooses a risky mortgage contract with loan balance B = Brisky, while maturity
rate µ∗ and loan approval rate α∗ solve:

max
α∈[0,1]

α ·
{

max
µ∈[0,µmax]

[
ω∆ω

1 + µ+ λ̄
− κ(µ)

]
− κ0

η(α)
+ (ω − 1) (vλ + f)

}
, (44)

where
∆ω ≡ ∆− λ̄

(
1− ω−1

)
(h− d) .
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2. Otherwise, the borrower chooses a safe mortgage contract with loan balance B = Bsafe,
maturity rate µ = µmax (implying short maturity), and loan approval rate αs solve:

max
α∈[0,1]

α ·
{
ωBsafe − κ(µmax)− κ0

η(α)

}
.

A.2.6 Belief convergence

At t = 0, the borrower’s expected gain from the mortgage is:

Vπ(m)− vπ

=



−B if B ≤ Bsafe

π
[
− 1+µ

1+µ+λB − λ
1+µ+λ(h− d+ f)

]
− (1− π)B if B ∈ (Bsafe, Brisky]

π

 − 1+µ
1+µ+λ+νB − λ

1+µ+λ+ν (h− d+ f)

− ν
1+µ+λ+ν (h− λ

1+λd+ f)

− (1− π)B if B ∈ (Brisky, Brisky
news ]

−vπ − f if B > Brisky
news

where the expected (subjective) value of the house is:

vπ ≡ π

(
h− λ

1 + λ
d

)
+ (1− π)h = h− πλ

1 + λ
d.

Note that the borrower is indifferent between the first and second region when B = Bsafe,
indifferent between the second and third region when B = Brisky, and indifferent between the
third and forth region when B = Brisky

news , where:

Brisky
news ≡ h− µπ

1 + µ+ (1− π) (λ+ ζ)

λ

1 + λ
d+ f > Brisky = h− µ

1 + µ

λ

1 + λ
d+ f.

Similarly, the lenders’ expected value of the repayment stream is:

Rπ̄(m) =



B if B ≤ Bsafe

− π̄λ
1+µ+λ

(
B −Bsafe)+B − π̄λ

1+µ+λf if B ∈ (Bsafe, Brisky]

− π̄(λ+ν)
1+µ+λ+ν

(
B −Bsafe)+B + π̄ν

1+µ+λ+ν
d

1+λ − π̄(λ+ν)
1+µ+λ+ν f if B ∈ (Brisky, Brisky

news ]

rp if B > Brisky
news

.

The joint surplus S(m) = Vπ(m)− vπ +Rπ̄(m) becomes:

S(m) =



0 if B ≤ Bsafe

S1(B,µ) ≡ (π−π̄)λ
1+µ+λ

(
B −Bsafe)− λπ̄

1+µ+λf if B ∈ (Bsafe, Brisky]

S2(B,µ) ≡ (π−π̄)(λ+ν)
1+µ+λ+ν

(
B −Bsafe)+ (π−π̄)ν

1+λ
d−π̄(λ+ν)f

1+µ+λ+ν if B ∈ (Brisky, Brisky
news ]

rp− f − vπ < 0 if B > Brisky
news

.
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When π ≤ π̄ (the borrower is relatively more optimistic), both S1 and S2 are decreasing
in B, and hence it is not optimal for the borrower to use a risky mortgage with B > Bsafe.
However, a safe mortgage with B ≤ Bsafe yields a joint surplus of zero. Given the presence
of the maintenance cost κ and the fixed cost of entry κ0, it is thus not optimal to issue any
mortgage contract in equilibrium.

When π > π̄ (the borrower is relatively more pessimistic), both S1 and S2 are strictly
increasing in B. Thus, the risky surpluses S1 is maximized at B = Brisky and S2 is maximized
at B = Brisky

news , which yields:

Sdis(µ) ≡ S1(B
risky, µ) =

1

1 + µ

(π − π̄)λd

1 + λ
− π̄λf

1 + µ+ λ
.

Snews(µ) ≡ S2(B
risky
news , µ) =

1 +
[
1− µπ

1+µ+(1−π)(λ+ν)

]
(λ+ ν)

1 + µ+ λ+ ν

(π − π̄)λd

1 + λ
− π̄ (λ+ ν) f

1 + µ+ λ+ ν
.

Putting these options together, the optimal contract (µ∗, α∗) solves:

max
α∈[0,1]

α ·
{
max
µ≥0

[
max

{
Sdis(µ), Snews(µ)

}
− κ(µ)

]
− κ0

η(α)

}
. (45)

Whether the borrower will choose a risky mortgage contract with B = Brisky (and gets
the surplus Sdis) or a risky mortgage contract with B = Brisky

news (and gets the surplus Snews)
depends on parameters, in particular the foreclosure cost f . However, focusing on the simple
case where the foreclosure cost vanishes (f → 0), it is always the case that Sdis < Snews for all
µ. Hence, in equilibrium the borrower will choose a risky mortgage contract in the new risky
region (Brisky, Brisky

news ]. In this region, the borrower will default when the disaster hits or when
the bad news hits.

A.2.7 Deterministic maturity

Suppose a mortgage is now a loan contract m = (l, b, T̄ ) that specifies a promised repayment
flow of b per each period between t = 0 and a deterministic maturity period t = T̄ . At each
period 0 ≤ t ≤ T̄ , the loan balance Bt is the present value of the remaining stream of promised
repayments:

Bt =

∫ T̄

t
re−r(t′−t)bdt′ = (1− e−r(T̄−t))b,

and follows the following law of motion:

dB

dt
= −r(b−B) = −re−r(T̄−t)b, (46)

which shows that the loan balance decreases over time.
The borrower’s continuation value Vλ given loan balance B and repayment flow b now

satisfies the following HJB equation, which takes into account law of motion (46):

(1 + λ)rVλ(B, b) = r(h− b)− r(b−B)
∂Vλ

∂B
+ rλ

[
1B≤Bsafe(h− d−B)− 1B>Bsafef

]
,
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where Bsafe ≡ h− d, and the initial condition Vλ(0, b) = vλ = h− λ
1+λd. The risky debt limit

Brisky(b) is the level of loan balance such that Vλ(B, b) = 0.
Similarly, the lenders’ continuation value satisfies:

(1 + λ̄)rRλ̄(B, b) = rb− r(b−B)
∂Rλ̄

∂B
+ rλ̄

[
1B≤BsafeB + 1B>Bsafe(h− d)

]
.

For tractability, for the rest of the section, we assume f = 0. Then, solving these equations
yields:

Brisky(b) = b− (b− h)
1

1+λ (b−Bsafe)
λ

1+λ ,

Vλ(B, b) =

 h−b
1+λ + b−Bsafe

1+λ

(
b−B

b−Bsafe

)1+λ
if Bsafe < B ≤ Brisky(b)

vλ −B if B ≤ Bsafe
,

and

Rλ̄(B, b) =


b+λ̄(h−d)

1+λ̄
− b−Bsafe

1+λ̄

(
b−B

b−Bsafe

)1+λ̄
if Bsafe < B ≤ Brisky(b)

B if B ≤ Bsafe
.

Hence, the surplus S ≡ Vλ − vλ +Rλ̄ is given by:

S(B, b) =


[

λ−λ̄
(1+λ)(1+λ̄)

+ 1
1+λ

(
b−B

b−Bsafe

)1+λ
− 1

1+λ̄

(
b−B

b−Bsafe

)1+λ̄
]
(b−Bsafe) if Bsafe < B ≤ Brisky(b)

0 if B ≤ Bsafe
.

Note that for a given risky mortgage, the surplus is strictly increasing (decreasing) in B

when λ > λ̄ (λ < λ̄). Hence, pessimistic homebuyers with λ > λ̄ will choose the maximal
risky mortgage at B = Brisky(b), but optimistic homebuyers with λ > λ̄ will not borrow, i.e.,
B = 0. In other words, λ∗ = λ̄ when maturity is deterministic.

Finally, as in Proposition 2, at t = 0, a relative optimistic homebuyer (λ ≤ λ∗) will not
borrow; a relatively pessimistic homebuyer (λ > λ∗) will borrow, and will choose a mortgage
with b∗, T̄ ∗ and α∗ that solve:

max
α∈[0,1]

α ·
{
max
b,T̄

[
S(Brisky(b), b)− k(T̄ )

]
− κ0

η(α)

}

subject to Brisky(b) = (1− e−rT̄ )b, and the loan amount l∗ is given by the lender’s free-entry
condition:

η(α) · (Rλ̄(B
risky(b∗), b∗)− rl∗ − k(T̄ ∗)) = κ0,

where k(T̄ ) and κ0 denote the servicing cost and entry cost, withk′(T̄ ) > 0 and k′′(T̄ ) > 0.

A.2.8 Aggregate model with general heterogeneity

Homebuyers/borrowers search for lenders in submarkets. For each type of house d, each type
of borrower λ, and for each mortgage contract m, a submarket consists of an (endogenous)
measure nb

m of type-λ homebuyers of a type-d house for whom contract m solves their opti-
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mization problem, and an (endogenous) measure nl
m of lenders for whom approving contract

m to a type-λ borrower satisfies their free-entry condition. Within each submarket, given nb
m

and nl
m, the number of matches produced is given by N(nb

m, nl
m), where N is a constant-

returns-to-scale matching technology function.
The probability a borrower in the submarket finds a match (the leverage probability) is

given by:

αm ≡ N(nb
m, nl

m)

nb
m

= N (nm) ≡ N(1, nm), (47)

where nm ≡ nl
m/nb

m is the loan market thickness and N is increasing and concave. Similarly,
the probability that a lender finds a match is:

ηm ≡ N(nb
m, nl

m)

nl
m

= N(1/nm, 1). (48)

For each submarket, the lenders’ free-entry condition is:

ηm(m)Πλ̄(m) = κ0. (49)

Definition 1. A competitive search equilibrium consists of (i) a menu of all available loan
contracts M(λ, d), (ii) measures nb

m(λ, d) and nl
m(λ, d) of borrowers and lenders in each sub-

market, and (iii) their matching probabilities αm(λ, d) and ηm(λ, d), for each borrower type
λ, house type d, and mortgage m ∈ M(λ, d), such that:

1. Given αm and M, nb
m is the measure of type-λ borrowers choosing loan contract m to

finance the purchase of a type-d house in their optimization problem (5);

2. Given ηm and M, nl
m is the measure of lenders offering loan contract m to type-λ

homebuyers of a type-d house, subject to (49);

3. Given nb
m and nl

m, αm and ηm are given by (47) and (48);

4. M is the set of mortgage contracts m such that free-entry (49) holds with equality;

5. Each submarket clears: ∫
m∈M(λ,d)

nb
m(λ, d) = ϕ(λ, d), ∀λ, d,

where ϕ is the density function of the joint distribution of belief and exposure types.

It is straightforward to show that Proposition 2 continues to hold in this environment,
except that now the probability that a lender is matched with a borrower ηm can be derived
endogenously from (47) and (48) as a function of αm:

ηm = η(αm) ≡ αm

N−1 (αm)
, (50)
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where

η′(αm) = − 1

n2
m

< 0,

η′′(αm) =
1

n3
m

1

N ′ (nm)
> 0,

as stated in the baseline model.

A.2.9 MBS pool

We further extend the model to incorporate the securitization process more explicitly. Consider
the generalized model with multiple types of homebuyers and houses in Section 7.1. We
introduce the GSE agent as in 4.3, who guarantees and purchases the mortgages issued by the
lenders to the borrowers. Following (Dubey and Geanakoplos, 2002; Dubey et al., 2005), we
assume that mortgages are pooled together and shares of the pool are sold to a set of investors
(think of investors in the MBS market).

Given the guarantee payment, the MBS price at the disaster date t = T is simply:

PT =

∫
λ>λ∗,d>λ̄f

Brisky(λ, d)

r
ϕ∗
T (λ, d), (51)

where ϕ∗
T is the measure of defaulting loans defined in (25). At the disaster date T , all the

risky debts at-risk are defaulted. For each defaulting loan, the GSE repays the MBS investors
the remaining loan balance Brisky(λ, d)/r.

Let λi and ri denote the belief parameter and the discount rate of MBS investors. We
focus on the relevant case of patient investors: ri < r.58 The MBS price in any pre-disaster
period t < T is given by the investors’ present value of the pool of mortgage repayment streams
(which are guaranteed by the GSEs):

riPt =

∫
λ>λ∗,d>λ̄f

(
1 + µ∗

1 + µ∗ + λi
+

ri

r

λi

1 + µ∗ + λi

)
Brisky(λ, d)ϕ∗

t (λ, d), (52)

where the term in the brackets takes into account the investors’ belief and discount rate.
For MBS investors, the mortgage default risk is effectively transformed to a prepayment

risk, due to the guaranteed provided by the GSEs (Weiner, 2016). In equilibrium, when
the disaster arrives, risky mortgages are defaulted, and the GSE agent makes a lump-sum
payment of the unpaid balances to the MBS investors. Hence, investors receive a one-time
guarantee payment, instead of the regular repayment flows. This prepayment of the balances
is undesirable for patient MBS investors, reflected by the fact that the “prepayment penalty”
term 1+µ∗

1+µ∗+λi +
ri

r
λi

1+µ∗+λi in equation (52) is less than one.

58This is a reasonable assumption, as the biggest investors in agency MBSs are depository institutions and
the Federal Reserve (Fuster et al., 2022).

66



Hence, even with the GSE guarantee, the disaster causes a drop in the MBS price:

PT < lim
t→T−

Pt.

Since a subsidized g-fee encourages risky mortgage origination, leading to a pool of mort-
gages with a higher default risk in equilibrium, it follows that a subsidized g-fee also has an
unintended consequence of increasing the sensitivity of the MBS price to the disaster shock.

A.2.10 Time-inconsistency problem in disaster forbearance policies

First, consider a committed planner who at the beginning of t = 0 (before mortgage decisions
are made) chooses and commits ex-ante to a disaster forbearance policy, represented by the
choice of parameter ε in Section 7.4. The optimal forbearance under commitment solves a
cost minimization problem:

ε∗0 ≡ arg min
ε∈[0,ε̄]

E

e−rT Arisky
T (ε)︸ ︷︷ ︸

number of defaulting loans

 e−rεf︸ ︷︷ ︸
benefit of postponing default loss

+ Ψ(ε)︸︷︷︸
fiscal cost


 ,

where Ψ is a convex function (Ψ > 0, ∂Ψ/∂ε > 0, ∂2Ψ/∂ε2 > 0), capturing the fiscal cost
of forbearing each defaulted loan, and the expectation is with respect to T according to the
planner’s belief. Assuming an interior solution, the first-order condition for ε∗0 is:

Ψ′ (ε∗0) = re−rε∗0f −
E
{
e−rT ∂Arisky

T (ε∗0)
∂ε

}
E
{
e−rTArisky

T (ε∗0)
} [

e−rε∗0f +Ψ(ε∗0)
]
. (53)

The key thing to notice that the committed planner internalizes how their policy choice of ε
affects the measure of risky debt in the market Arisky

T .
Second, consider a planner with limited commitment who, at date t = T (after the disaster

realizes), can deviate from the ex-ante policy ε∗0 and select the disaster forbearance parameter ε
ex-post.59 We will show that this planner will deviate and choose a more generous forbearance
ε∗T > ε∗0. The key factor here is that at t = T , the mortgage choices have already been made at
t = 0. Hence, the limited commitment planner takes Arisky

T as given when choosing its policy:60

ε∗T ≡ arg min
ε∈[0,ε̄]

Arisky
T

[
e−rεf +Ψ(ε)

]
.

Again assuming interior solutions, the equilibrium ε∗T solves the following first-order condition:

Ψ′(ε∗T ) = re−rε∗T f. (54)
59For simplicity, we assume that the limited commitment planner only has one window of opportunity to

change the policy at t = T . One can also consider a more complex model where the limited commitment
planner can instead choose at all t ≥ T whether to continue the forbearance.

60There is no expectation operator because all uncertainty will have resolved by t = T .
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The main difference between the committed and uncommitted first-order conditions is the
absence of the second term of (53) in (54). This absence reflects the fact that the limited
commitment planner at t = T takes the mortgage choices made at t = 0 as given, and hence
does not internalize how their policy affects the measure of risky mortgages Arisky.

In a rational expectation equilibrium, private agents at t = 0 correctly expect the planner’s
choice at t = T , so Arisky

T in (54) is given by Arisky
T = Arisky

T (ε∗T ). The resulting planner’s choice
of ε∗T is thus time-consistent.

Since ∂Arisky
T /∂ε > 0, it follows from (53) and (54) that Ψ′(ϵ∗T ) > Ψ′(ϵ∗0). Furthermore,

since ∂2Ψ/∂ϵ2 > 0, it follows that the disaster forbearance with limited commitment is more
generous:

ε∗T > ε∗0,

and as private agents rationally anticipate more forbearance, there will be more risky mort-
gages under limited commitment:

Arisky
T (ε∗T ) > Arisky

T (ε∗0).

This result is very similar to how the rational expectation of more bailout from a limited
commitment planner (or more inflation from a limited commitment central bank) will lead
to higher equilibrium bankruptcies (or higher equilibrium inflation), as in Chari and Kehoe
(2016) (or Barro and Gordon 1983).

B Online Appendix: Empirics

B.1 Data: Details

NOAA SLR Viewer maps are publicly available at https://coast.noaa.gov/digitalcoast/
tools/slr.html. The Yale Climate Opinion Survey data is publicly available at https:

//climatecommunication.yale.edu/visualizations-data/ycom/.
As mentioned in Section 5.1, we include a suite of county-by-year level socioeconomic and

neighborhood variables as additional controls. Our baseline specifications include controls for
average personal income and county population, using the data from the Bureau of Economic
Analysis’ (BEA) Regional Economic Accounts, which is available for all of the years in our
sample.

In additional sensitivity analyses, we also gather data at the county-by-year level on the
demographic and ideological composition of the buyer’s county (gender, age, race/ethnicity,
voting behavior, and education) as well as local economic data from the property’s location
(unemployment rate, test scores, arrests, new building permits, and previous flood events).
Data for most of these additional control variables are available since 2010. We use the annual
county-level population files from the National Cancer Institute’s Surveillance, Epidemiology,
and End Results Program to calculate the share of each county that is female, nonwhite, age
65 and older, and age 5 and younger.

We gather data from the MIT Election Lab on the percentage of Republican or Democratic
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votes in the previous presidential election. As a proxy for education, we use annual test scores
data from the Stanford Education Data Archive (SEDA). SEDA provides average academic
achievement for grades 3-8 at the county level, as measured by standardized tests in reading
and math.

We download annual county unemployment rates from the Bureau of Labor Statistics.
For data on the yearly total number of arrests at the county level, we use the Uniform Crime
Reporting (UCR) Program Data. We use the Building Permits Survey from the Census Bureau
to calculate the yearly number of new housing units authorized by building permits in each
county. Lastly, we use NOAA’s Storm Events Database to calculate the number of flood events
each year. We then lag this measure by one year to control for the previous year’s flood events.

For the exercise using Gallup data (Section 6.1.4), we use data on age, race/ethnicity,
and gender from the National Cancer Institute’s Surveillance, Epidemiology, and End Results
Program’s U.S. County Population Data. We use county-by-five-year average estimates for
educational attainment from the U.S. Census’ American Community Survey.

For the securitization exercise in Section 6.2, we collect Fannie Mae and Freddie Mac’s
conforming loan limits for single-unit single family homes between 2001 and 2016. Between
2001 and 2007, when the conforming loan limit was constant across our data sample each year,
we collect loan limit information from data replication files from LaCour-Little et al. (2022).
From 2008 onward, we collect county-by-year loan limit information from the Federal Housing
Finance Agency (FHFA).61 We then match each property with the conforming loan limit in
the county and year of purchase.

B.2 Additional exercises

B.2.1 SLR measures

We further examine the sensitivity of our results to alternative specifications of SLR risk
measurement. To provide a more nuanced measure of SLR exposure, we define a monotonically
increasing exposure variable SLR Risk, which is equal to zero if a property is not expected to
be inundated with six feet of SLR, one if it is expected to be inundated with six feet, two if
inundated with five feet, three if inundated with four feet, and four if inundated with three or
fewer feet. Thus, the higher the value, the higher the exposure to inundation risk.

Table A9 repeats the benchmark mortgage regressions (L1) and (M1) using this more
nuanced measure of SLR. The table shows that our results continue to hold with this more
refined measure of exposure. The estimates for the interaction terms between SLR Risk and
PessBuyer are positive and significant for higher values of the SLR Risk variables. Also,
generally, the higher the exposure value, the larger the estimated coefficients—though the
differences are not always statistically significant from each other—highlighting that our results
are robust to different SLR definitions and individuals are attentive to the magnitude of SLR
inundation risk consistent with our theory.

61Available online at https://www.fhfa.gov/DataTools/Downloads/Pages/Conforming-Loan-Limit.aspx
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B.2.2 Fixed effect specifications

Recall that our main results include ZIP code × distance to coast bin × elevation bin × number
of bedrooms × time (transaction month-year) fixed effects (Z×D×E×B×M), in addition to
lender fixed effects in our long maturity results. Table A10 tests whether our main results are
robust to alternative fixed effects specifications. The top panel reports results for the leveraged
regression (L1) and the bottom panel reports those for long maturity regression (M1).

Column 1 uses a more flexible fixed effect specification relative to the benchmark speci-
fication by dropping the time dimension: ZIP code × distance to coast bin × elevation bin
× number of bedrooms (Z×D×E×B). The estimate for the coefficient of the interaction term
between SLR risk and PessBuyer remains positive and significant for the leveraged regres-
sion. It remains positive but is no longer significant for the maturity regression. Column 2
reintroduces a time dimension to the fixed effects by incorporating the quarter and year of
the transaction (Z×D×E×B×Q). The estimate for the interaction term between SLR risk
and PessBuyer is now both positive and statistically significant, in line with our benchmark
specification.

B.2.3 Owner occupied vs. non-owner occupied

A potential concern for our benchmark regressions (L1) and (M1) is that they pool together
owner-occupied (OO) transactions and non-owner-occupied (NOO) ones. It is possible that
NOO buyers have different incentives or constraints compared to OO buyers, as the former
could be using their property as an investment vehicle and therefore could be more “sophis-
ticated” in processing future SLR risk (see BGL) or more “deep-pocketed.” For this reason,
column 3 of Table A10 augments the specification in column 2 with a dummy O, which is
equal to one if the transaction is OO and zero otherwise, leading to a specification denoted by
Z×D×E×B×Q×O. Hence, we are comparing two transactions that are not only in the same
ZIP code, distance to coast bin, elevation bin, having the same number of bedrooms, the same
quarter and year of transaction, but also having the same owner occupied status (i.e., both
OO or both NOO). Our main results hold: the coefficient for the interaction term is positive
and significant in both the leveraged and in the long maturity regression. Column 4 repeats
the exercise in column 3, but replaces the quarter-year variable for the transaction time Q

with the benchmark month-year variable M . Again, our main results hold. Thus, we find that
our main results are robust to a variety of alternative fixed effect specifications.

In addition to the inclusion of a fixed effect for OO interacted with our other fixed effects,
we also directly examine how the main results differ for OO versus NOO buyers. In particular,
we re-estimate the main house price regression results from BGL using our data. We replicate
their findings that NOO buyers are more attentive to SLR and, on average, pay a lower price
for a home exposed to SLR relative to one not exposed. However, when we re-estimate our
main mortgage regressions instead interacting SLR exposure with a variable for NOO buyer,
we find that NOO buyers are not more strategic or sophisticated in the probability that they
take out a mortgage or the terms of a mortgage, relative to OO buyers of high SLR risk
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properties.

B.2.4 Bad controls

In examining the effects of climate beliefs on mortgage decisions, and as highlighted in our
theoretical model, we note that multiple mortgage characteristics (e.g., lending decision, matu-
rity length, interest rate, loan amount) are endogenously co-determined in the lending process.
Since these endogenous mortgage characteristics are outcomes themselves, we do not include
them in our main specifications, as we consider them to be “bad controls.” Conditioning on
them would change the characteristics of our treatment and control comparisons, leading to
results that do not represent the average effect on our sample as a whole (Angrist and Pischke,
2008). However, as a robustness check, we also include the interest rate as a control variable
in the analysis and find the results to be robust.62

We note that we include house price as a control variable in our main regression results.
However, while less directly negotiated in the lending decision, house price may also arguably
be a bad control if buyers include expectations about mortgage lending in their purchase
offers. Thus, Table A11 performs a further robustness check where we repeat the leverage and
maturity regressions (L1) and (M1) but omit the housing price as a control variable. As the
table shows, our results are qualitatively unaffected: the interaction term between SLR and
climate belief is positive and significant in both columns.

B.2.5 Results over time

Since both the attention to global warming and the disagreement in public opinion about
climate change have become more salient in the past decade (Engle et al. 2020; Bernstein
et al. 2022), it is natural to ask whether our results change over time. Table A13 investigates
this question. Columns 1, 3, and 5 repeat regressions (P1), (L1), and (M1), respectively, for
the subsample of transactions that took place before 2010, while columns 2, 4, and 6 repeat
them for transactions during or after 2010.

Consistent with the earlier literature (e.g., BGL and Goldsmith-Pinkham et al. 2021),
columns 1 and 2 show that the pricing of SLR risk is more pronounced after 2010, as the
estimates for the SLR variable are more significant and negative in the recent sample. More
importantly, the estimates of the interaction terms SLR Risk× PessBuyer in columns 3 to 6
show that our main results on the effects of SLR and climate beliefs on mortgage outcomes are
more significant (statistically and economically) in the more recent sample. Thus, these results
are consistent with climate risk in financial systems becoming more pronounced over time as
heterogeneous climate beliefs, and climate risk salience among pessimists, has increased.

62The interest rate is only available for ≈30,000 observations in our sample. Results available by request.
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B.2.6 Other intensive margins

A natural question arises as to how climate beliefs affect other intensive margin outcomes such
as the loan amount and interest rate mortgage characteristics.63 Thus, we re-estimate our main
regression specifications using the loan amount and interest rates as outcome variables. Table
A14 reports these results. Consistent Corollary 3, which produce ambiguous comparative
statics with respect to the equilibrium loan amount B, column 1 shows that the interaction
between the SLR risk and the pessimistic buyer dummy does not have a significant impact
on the mortgage amount: the estimated coefficient is positive but not statistically significant.
Similarly, in column 2, where the dependent variable is the mortgage interest rate, the estimate
of the interaction term is positive but not statistically significant.64

B.3 Omitted tables

Mean Std p10 p90 N

Sale Price $419,337 $631,804 $95,000 $779,000 2,250,995
Leveraged (dummy) 0.60 0.49 0 1 2,247,670
Mortgage amount $300,517 $337,469 $90,000 $537,500 1,349,817
Long Maturity (dummy) 0.87 0.34 0 1 1,196,639
Mortgage term (years) 27.90 6.19 15 30 1,196,639
Distance to coast (meters) 386.42 294.66 42.24 841.53 2,250,995
Elevation (meters) 7.03 12.43 1.30 14.35 916,170
Belief: happening (buyer county, %) 66.32 5.21 61 73 2,219,924
Belief: worried (buyer county, %) 56.33 6.29 49 66 2,219,924
Belief: timing (buyer county, %) 44.81 4.67 40 52 2,219,892
Inundated at 6ft SLR (dummy) 0.24 0.43 0 1 2,250,995
Moderate SLR Risk (dummy) 0.20 0.40 0 1 2,250,995
High SLR Risk (dummy) 0.04 0.19 0 0 2,250,995

Table A1: Summary statistics of key variables. Leveraged is a binary variable equal to one
when a transaction is associated with a mortgage and zero otherwise. Long Maturity is a binary
variable equal to one when the mortgage term is at least 30 years and zero otherwise. Mortgage
amount and term statistics are reported conditional on having a mortgage. Inundated at 6ft
of SLR is a binary variable equal to one if the property is predicted to be inundated at 6ft of
SLR according to NOAA and zero otherwise. Moderate SLR Risk (High SLR Risk) is equal
to one if a property will be inundated with >3 but ≤6 feet of SLR (≤3 feet of SLR) and zero
otherwise. Main data sources: CoreLogic, NOAA SLR Viewer, and Yale Climate Opinion
Survey.

63Recall from Section B.2.4 that we do not include these in endogenous mortgage characteristics in our main
regression models as they are bad controls.

64Note that in column 2, we also include a fixed effect for whether a mortgage has a 30-year maturity, so
that we are only comparing the mortgage interest rates of loans that have similar maturity. Also note that the
sample size shrinks to approximately 30,000 observations in this exercise. It is possible that the interaction
term becomes statistically significant if we had a larger sample.
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Continuous Yale Yale Yale Gallup Gallup Individual County mean
happening worried timing when worry λ̂ λ̂

1
(0.0000)

Yale worried 0.9020*** 1
(0.0000) (0.0000)

Yale timing 0.8526*** 0.9187*** 1
(0.0000) (0.0000) (0.0000)

Gallup when 0.5685*** 0.6414*** 0.5133*** 1
(0.0000) (0.0000) (0.0000) (0.0000)

Gallup worried 0.6759*** 0.7742*** 0.6843*** 0.8083*** 1
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Individual λ̂ 0.0046** 0.0021 0.0005 0.0029 0.0001 1
(0.0339) (0.346) (0.8041) (0.1777) (0.9465) (0.0000)

County mean λ̂ 0.1391*** 0.1267*** 0.1216*** 0.0627*** 0.0919*** 0.1165*** 1
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(a) Continuous belief variables.

Above median Yale Yale Yale Gallup Gallup Individual County mean
happening worried timing when worry λ̂ λ̂

Yale happening 1
(0.0000)

Yale worried 0.6458*** 1
(0.0000) (0.0000)

Yale timing 0.5898*** 0.6868*** 1
(0.0000) (0.0000) (0.0000)

Gallup when 0.4631*** 0.6794*** 0.4574*** 1
(0.0000) (0.0000) (0.0000) (0.0000)

Gallup worried 0.4697*** 0.7178*** 0.5075*** 0.7425*** 1
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

̂PessBuyer 0.0464*** 0.0299*** 0.0302*** 0.0058*** 0.0419*** 1
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

County mean λ̂ 0.0909*** 0.0493*** 0.1106*** -0.0382*** 0.0166*** 0.0491*** 1
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(b) Binary belief variables (one if corresponding variable is above sample median, zero otherwise).

Table A2: Pairwise correlation of belief variables. Panel (a) displays pairwise correlations
between continuous versions of belief variable specifications. Panel (b) displays pairwise corre-
lations between binary belief variables defined as equal to 1 if the county is above the variable
sample median and zero otherwise. Yale beliefs variables from the Yale Climate Opinions Sur-
vey are defined as the average county-level climate beliefs as described in Section 6.1.2. Beliefs
from the Gallup data are imputed at the county-by-year level by the authors as described in
Section 6.1.4. Individual λ̂ is the transaction-level beliefs at the time of property sale imputed
by the authors as described in Section 6.1.1. County mean λ̂ represents a county-level mean
value of the continuous λ̂ variable averaged across buyers from that county. ̂PessBuyer is
the binary belief variable at the county level equal to one if the county belief is above the
sample median and zero otherwise, as described in Section 6.1.1. County mean λ̂ is similar to

̂PessBuyer but equal to one if the county’s average of ̂PessBuyer is above the sample mean
and zero otherwise. Pairwise correlation p-values are shown in parentheses. * (p < 0.1), ** (p
< 0.05), *** (p < 0.01).
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Leveraged Long Maturity
Happening Worried Timing Happening Worried Timing

SLR Risk × Pess Buyer (above median) 0.034*** 0.046*** 0.031** 0.024*** 0.027*** 0.023***
(0.011) (0.012) (0.013) (0.007) (0.007) (0.007)

SLR × 2nd Quartile Belief 0.023** 0.006 0.002 0.030*** 0.008 0.025**
(0.011) (0.012) (0.011) (0.008) (0.010) (0.010)

SLR × 3rd Quartile Belief 0.010 0.058*** 0.021 0.034*** 0.033*** 0.016
(0.017) (0.013) (0.015) (0.011) (0.009) (0.010)

SLR × 4th Quartile (highest) Belief 0.046** 0.047* 0.051*** 0.035*** 0.023 0.038***
(0.018) (0.027) (0.015) (0.010) (0.017) (0.010)

SLR Risk × Belief (continuous) 0.002 0.003*** 0.003** 0.002** 0.002** 0.003***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Z × D × E × B × M fe Y Y Y Y Y Y
Property & buyer county controls Y Y Y Y Y Y
Buyer county controls × SLR Y Y Y Y Y Y
Lender fe Y Y Y

Table A3: Robustness with alternative specifications for the buyer county belief measure.
Columns 1-3 report results for variations of leveraged regression (L1) and columns 4-6 for long
maturity regressions (M1). Columns 1 and 4 (Happening) use 2014 Yale Climate Opinion
survey data for the percentage of people in each county who say they believe climate change
is happening; Columns 2 and 5 (Worried) – the percentage who say they are worried about
climate change; Columns 3 and 6 (Timing) – the percentage who think global warming will
start to harm people in the U.S. within ten years. PessBuyer in row 1 indicates whether the
buyer is from a county where the climate belief variable is above the sample median. Rows
2-4 rank counties into quartiles of the climate belief variable, and nth Quartile Belief is one
if the buyer is from a county in that nth quartile of belief and zero otherwise. Row 5 uses
the continuous measure of the belief variable (i.e., respectively, the fraction of the buyer’s
county saying that they belief climate change is happening, or that they are worried about
climate change, or that they think that global warming will harm the U.S. within ten years).
For brevity, only estimates of the coefficients of the interaction term SLR Risk × belief are
reported. The rest is the same as in Tables 3 and 4.
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Leveraged Long Maturity

SLR 0.425 0.514**
(0.347) (0.249)

SLR × PessBuyer 0.036** 0.033**
(0.014) (0.014)

Additional Controls Y Y
Property & Buyer County Controls Y Y
Z × D × E × B × M fe Y Y
Buyer County Controls × SLR Y Y
Lender fe Y
N 222,920 67,299
R2 0.444 0.447

Table A4: Robustness to the inclusion of a variety of additional county-by-year control vari-
ables, including buyer’s county average test scores, race, age, and gender as well as crime,
unemployment, new building permits and previous flood events from the property’s county.
The sample is 2010 to 2016. The rest is the same as in Tables 3 and 4.

Leveraged Long Maturity Leveraged Long Maturity

SLR -0.013 0.016 0.006 0.005
(0.04) (0.025) (.025) (0.023)

SLR × PessBuyer 0.036*** 0.022*** 0.036*** 0.025***
(0.013) (0.008) (0.014) (0.009)

Political Control Repub. share Repub. share Dem. share Dem. share
Z × D × E × B × M fe Y Y Y Y
Buyer county controls × SLR Y Y Y Y
Lender fe Y Y
N 405,893 150,746 405,825 150,734
R2 0.473 0.441 0.473 0.441

Table A5: Robustness to the inclusion of political affiliation data (percent of Republican or
Democratic vote shares in the previous presidential election at the county level). The rest is
the same as in Tables 3 and 4.
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Leveraged Long Maturity

SLR Risk -0.031 0.007
(0.021) (0.021)

SLR Risk × PessBuyer 0.033** 0.026*
(0.015) (0.015)

Z × D × E × B × M fe Y Y
Property & buyer county controls Y Y
Buyer county controls x SLR Y Y
Lender fe Y
N 210,764 62,926
R2 0.439 0.442

Table A6: Robustness with PessBuyer derived from county-by-year climate beliefs interpo-
lated from Gallup survey data according to the procedure in Section 6.1.4. Column 1 reports
results for leveraged regression (L1) and column 2 for long maturity regression (M1). The rest
is the same as in Tables 3 and 4.

Leveraged Long maturity

PessBuyer 0.006 0.000
(0.010) (0.004)

Z × D × E × B × T fe Y Y
Property & buyer county controls Y Y
Lender fe Y
N 310,217 119,508
R2 0.464 0.445

Table A7: Placebo test on beliefs using only properties in our original sample not at risk for
SLR. The rest of the table is the same as in Tables 3 and 4.
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Leveraged Long Maturity

SLR 0.006 0.002
(0.014) (0.014)

SLR × PessBuyer 0.026** 0.024***
(0.011) (0.008)

FEMA Zone -0.024*** -0.002
(0.008) (0.004)

FEMA Zone × PessBuyer 0.014 0.000
(0.011) (0.007)

Z × D × E × B × M fe Y Y
Buyer county controls × SLR Y Y
Lender FE Y
N 405,893 150,746
R2 0.473 0.441

Table A8: Robustness with the inclusion of current National Flood Insurance Program flood
zone information. FEMA Zone is a binary variable equal to one if the property lies in a
Special Flood Hazard Area as classified by FEMA and zero otherwise. The rest is the same
as in Tables 3 and 4.

Leveraged Long Maturity

1.SLR (6ft) 0.0180 0.0169
(0.014) (0.017)

2.SLR (5ft) 0.0140 -0.0042
(0.020) (0.026)

3.SLR (4ft) -0.0343 -0.0038
(0.027) (0.020)

4.SLR (≤3ft) -0.0362 -0.0305
(0.031) (0.024)

1.SLR × PessBuyer 0.0154 0.0140
(0.012) (0.009)

2.SLR × PessBuyer 0.0246* 0.0321**
(0.015) (0.014)

3.SLR × PessBuyer 0.0455** 0.0323**
(0.018) (0.014)

4.SLR × PessBuyer 0.0856*** 0.0322*
(0.023) (0.018)

Property & buyer county controls Y Y
Buyer county controls x SLR Y Y
Z × D × E × B × M fe Y Y
Lender fe Y
N 405,893 150,746
R2 0.473 0.441

Table A9: Robustness with more refined measure of SLR risk. i.SLR Risk where i ∈ {1, . . . , 4}
indicates whether a property will be inundated with 6, 5, 4, or less than or equal to 3 feet
of SLR, respectively. Comparison group: properties that will not be inundated even with six
feet of SLR. The rest is the same as in Tables 3 and 4.
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Leveraged

SLR Risk 0.007 -0.005 0.010 0.012
(0.016) (0.012) (0.010) (0.013)

SLR Risk × PessBuyer 0.032*** 0.031*** 0.019** 0.021**
(0.010) (0.011) (0.008) (0.010)

Fixed effects Z×D×E×B Z×D×E×B×Q Z×D×E×B×Q×O Z×D×E×B×M×O
Property & buyer county controls Y Y Y Y
Buyer county controls × SLR Y Y Y Y
N 852,817 568,636 490,546 322,484
R2 0.188 0.404 0.461 0.526

Long Maturity

SLR Risk -0.011* -0.003 -0.005 -0.010
(0.006) (0.011) (0.012) (0.019)

SLR Risk × PessBuyer 0.007 0.017*** 0.012* 0.022**
(0.005) (0.006) (0.007) (0.009)

Fixed effects Z×D×E×B Z×D×E×B×Q Z×D×E×B×Q×O Z×D×E×B×M×O
Property & buyer county controls Y Y Y Y
Buyer county controls × SLR Y Y Y Y
Lender fe Y Y Y Y
N 852,817 568,636 490,546 322,484
R2 0.123 0.365 0.400 0.466

Table A10: Robustness with alternative fixed effects. Top table: dependent variable is Lever-
aged (equal to one if the transaction is associated with a mortgage and zero otherwise). Bottom
table: dependent variable is Long Maturity (equal to one if the mortgage term is 30 years and
zero if 15 years). Fixed effect abbreviations: Z – ZIP code, D – distance to coast bin, E –
elevation bin, B – number of bedrooms, Q – quarter and year of transaction, M – month and
year of transaction, O – owner-occupied status. The rest is the same as in Tables 3 and 4.
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Leveraged Long Maturity

SLR Risk -0.009 0.002
(0.014) (0.014)

SLR Risk × PessBuyer 0.025** 0.024***
(0.010) (0.007)

Log Housing Price − −

Property & buyer county controls Y Y
Z × D × E × B × M fe Y Y
Buyer county controls × SLR Y Y
Lender fe Y
N 405,893 150,746
R2 0.465 0.441

Table A11: Robustness where housing price is not included as a control variable. The rest is
the same as in Tables 3 and 4.

Leveraged & Long Maturity &
Conforming Nonconform Conforming Nonconform

SLR Risk -0.058*** 0.024*** 0.005 0.003
(0.019) (0.008) (0.027) (0.018)

SLR Risk × PessBuyer 0.030** 0.006 0.027 -0.001
(0.015) (0.005) (0.016) (0.011)

Property & buyer county controls Y Y Y Y
Buyer county controls × SLR Y Y Y Y
Z × D × E × B × M fe Y Y Y Y
Lender fe Y Y
N 229,294 229,294 87,623 87,623
R2 0.437 0.540 0.539 0.652

Table A12: Role of conforming loans in years ≥ 2009. Column 1: dependent variable is whether
a transaction is leveraged and the mortgage is conforming. Column 3: restricting to leveraged
sample, dependent variable is whether the mortgage has long maturity (≥30 years) and is
conforming. Columns 2 and 4 repeat columns 1 and 3, respectively, but replace conforming
with nonconforming. Only mortgages from 2009 to 2016 are included in these results. For
brevity, only estimates of the coefficients of SLR Risk and the interaction term SLR Risk ×
Pessimistic Buyer are reported. The rest is the same as in Tables 3 and 4.
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log(Housing Price) Leveraged Long Maturity
<2010 ≥2010 <2010 ≥2010 <2010 ≥2010

SLR -0.018 -0.060** 0.022 -0.033 0.002 0.009
(0.023) (0.027) (0.016) (0.021) (0.017) (0.020)

SLR x PessBuyer -0.056*** -0.066*** 0.025* 0.037** 0.015* 0.038**
(0.018) (0.022) (0.013) (0.014) (0.009) (0.015)

Property & buyer county controls Y Y Y Y Y Y
Buyer county controls × SLR Y Y Y Y Y Y
Z × D × E × B × M fe Y Y Y Y Y Y
Lender fe Y Y
N 195,521 211,080 195,096 210,797 86,992 62,927
R2 0.883 0.854 0.474 0.439 0.448 0.442

Table A13: Results over time. Columns 1, 3, and 5 use only the sample of property transactions
that take place up to December 2009. Columns 2, 4, and 6 use only those that take place from
January 2010 onward. The rest is the same as in Tables 2, 3, and 4.

log(Loan amount) Mortgage interest rate

SLR Risk 0.001 -0.095
(0.011) (0.160)

SLR Risk × PessBuyer 0.008 0.037
(0.009) (0.088)

Property & buyer county controls Y Y
Buyer county controls × SLR Y Y
Z × D × E × B × M fe Y Y
Lender fe Y Y
30 year f.e. Y
N 168,409 28,873
R2 0.920 0.725

Table A14: Other intensive margins: Effects of exposure to SLR risk and its interaction with
climate belief on mortgage loan amount (column 1) and mortgage interest rate (column 2).
Sample restricted to transactions associated with a mortgage contract. In order to compare
the mortgage interest rates across only loans with similar maturity, column 2 also includes a
fixed effect equal to one if a mortgage has a 30-year maturity (and zero if it has a 15-year
maturity). The rest is the same as in Tables 3 and 4.

B.4 GSE loan analysis

We access the GSE database (containing Freddie Mac Single Family Loan-Level Data and
Fannie Mae Single-Family Loan Performance Data) and the First Street Foundation (FSF)
data via the Federal Reserve data warehouse.

The FSF is a major provider of high-resolution climate risk projections for U.S. real estate,
and its risk scores are being used by researchers, government agencies, and major real estate
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listing agencies (https://firststreet.org/risk-factor/flood-factor/). The Flood Fac-
tor (FF) assigns each property a flood risk score between 1 (safe/minimal risk) to 10 (extreme
risk). In FSF data, about 80 percent of properties are safe (FF = 1), and 20 percent are at
risk (FF ≥ 2).

Figure A3: Event study of the effect of Hurricane Irma on mortgage default. The figure plots
the default frequency of GSE-backed mortgages before and after Hurricane Irma (2017q3) in
affected (red) and unaffected (blue) three-digit ZIP codes in Florida. The figure on the left
plots the observed means. The figure on the right normalizes using a linear-trends model where
both the treatment and control group are normalized to the same point at the beginning of
our data period. The difference-in-differences regression includes loan fixed effects and quarter
fixed effects. The hurricane led to a 40 basis point increase (standard error: 3 basis points)
in the default frequency of loans in the treated sample, relative to that in the control sample.
We find the parallel trends assumption holds as we fail to reject the null hypothesis of parallel
(pretreatment) trends (Prob>F=0.169). See data descriptions in Appendix Section B.4.

To conduct an event study of how Hurricane Irma affects the default frequency of mortgage
loans, we use a sample of 550,953 GSE loans in 3-digit ZIP codes within coastal counties in
Florida. The analysis compares the incidence of default 1.5 years before and 1.5 years after
the hurricane (the sample consists of 6,611,436 loan-quarter observations from 2016Q1 to
2018Q4) of loans in 3-digit ZIP codes that are affected (the treatment group) against loans
in ZIP codes that are not affected (the control group). The dependent variable is the default
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dummy def it, which is one if loan i has reached zero balance due to default65 before quarter
t, and zero otherwise. The key independent variable is the interaction between a treatment
dummy for whether the loan i is in an affected area and a post dummy for whether the
quarter t is on or after 2017q3. We use FEMA Disaster Declarations Summary v2’s dataset
to identify the areas affected by Hurricane Irma. The dataset contains information on which
disaster recovery programs were declared for each hurricane. We consider a 3-digit ZIP code
as affected when more than 80% of the housing units in the area were eligible for an individual
disaster assistance. The linear probability model includes loan and time fixed effects. The
standard errors are clustered at the loan level. The results are shown in Appendix Figure A3.

65That is, the loan has reached zero balance according to the GSE data, but not because of (pre)payment
or third party sale.
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